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Figure 1: Scene modeling using a context search. Left: A user modeling a scene places the blue box in the scene and asks for models that
belong at this location. Middle: Our algorithm selects models from the database that match the provided neighborhood. Right: The user
selects a model from the list and it is inserted into the scene. All models pictured in this paper are used with permission from Google 3D

Warehouse.

Abstract

Large corpora of 3D models, such as Google 3D Warehouse, are
now becoming available on the web. It is possible to search these
databases using a keyword search. This makes it possible for de-
signers to easily include existing content into new scenes. In this
paper, we describe a method for context-based search of 3D scenes.
We first downloaded a large set of scene graphs from Google 3D
Warehouse. These scene graphs were segmented into individual ob-
jects. We also extracted tags from the names of the models. Given
the object shape, tags, and spatial relationship between pairs of ob-
jects, we can predict the strength of a relationship between a candi-
date model and an existing object in the scene. Using this function,
we can perform context-based queries. The user specifies a region
in the scene they are modeling using a 3D bounding box, and the
system returns a list of related objects. We show that context-based
queries perform better than keyword queries alone, and that without
any keywords our algorithm still returns a relevant set of models.

Keywords: 3D model search, scene modeling, shape retrieval,
spatial context

1 Introduction

One method for helping designers create content is to make it easy
to incorporate content produced by others into their designs. It is
simple for anyone to search for images and clip-art on the Internet,
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and then insert the results into her or his project. Although it is
easier to find 2D content than 3D content, systems such as Google
3D Warehouse are changing that by creating large, searchable col-
lections of 3D models. Users can upload models into Google 3D
Warehouse, tag them, and then others can search for models using
keyword queries.

At present, the tasks of 3D model search and scene modeling are
decoupled. The user first performs the keyword search, and then
inserts a model into the scene. The goal of this research is to de-
velop a context-based 3D search engine. The workflow is shown
in Figure 1. The user first selects a 3D box where they want to in-
sert an object into the scene, and then searches for relevant objects
at this location. The user can further refine the search by adding
keywords to the query. In a sense, we have changed the order of
operations from first searching and then placing, to first locating
and then searching. We will show that by using the spatial context
of a target location, a better set of models will be returned.

Our context search uses a data-driven approach, attempting to learn
spatial relationships from existing scenes. First, we extract a large
number of complete scenes from Google 3D Warehouse and seg-
ment these scenes into their constituent components. We then pre-
process this dataset to determine for each model a set of similar
models based on properties such as the model geometry and tags.
We make the assumption that similar objects occur in similar con-
texts. Given a user-provided context, our algorithm finds clusters
of related models in the database that have appeared in a similar
context.

2 Background

2.1 Geometric Search Engines

Several 3D model search engines have been proposed [Funkhouser
et al. 2003; Chen et al. 2003]. The most common approach used
by these engines is to use a keyword search, where the user enters
a text query and models are ranked based on how close the query
matches a set of tags associated with the object. These per-model
tags are often either already provided, mined from filenames or tex-
tual context, or automatically propagated from similar models [Min



et al. 2004; Goldfeder and Allen 2008]. Another query type is for
the user to provide either a 2D sketch or a 3D model (typically
found via another search query) and ask the system to return simi-
lar models [Chen et al. 2003; Funkhouser and Shilane 2006]. These
similarity queries usually work by reducing the models to a feature
space that can be readily compared to produce a distance metric be-
tween any two models; we will make use of these distance metrics
when designing our context-based query.

Some 3D search engines use relevance feedback to improve results.
The user selects relevant models from a candidate list of results,
and the search engine attempts to transform the feature space to
favor objects similar to ones the user marks as relevant [Papadakis
et al. 2008]. Although we have not yet explored this approach in
our work, we believe relevance feedback can be very effective in
scene composition, since for a given query different users may have
wildly varying preferences for which models are desireable.

Work by Funkhouser et al. [2004] also presents a data-driven object
modeling system. In their work, a user starts with a base model and
then issues queries for related models that have desireable parts. To
determine whether a candidate model is a good match to the query,
they approximate the sum of the distances from every point on one
surface to the closest point on the other, and vice-versa, weight-
ing selected regions on the surface higher. The main difference
between this work and our approach is that our focus is on scene
composition containing a large number of disjoint models and not
on finding similar parts for a single model. When comparing two
scenes, we will not use a surface deformation approach and instead
leverage the semantic segmentation and tagging of the scenes. Our
algorithm will also attempt to learn general relationships between
models from the database.

2.2 Spatial Context in Computer Vision

Computer vision research has made significant progress on using
spatial context in photographs. One use of context information
is to disambiguate two visually similar but semantically differ-
ent objects. Some early work learned object relationships by ex-
plicitly enumerating rules about spatial context [Strat and Fischler
1991]. More recent work learns context from an existing set of im-
ages, each of which has been manually segmented into semantically
meaningful objects that are then explicitly tagged; three popular im-
age sets are the PASCAL, MSRC, and LabelMe datasets [Russell
et al. 2008]. Another possible source of contextual relationships is
Google Sets, which uses the Internet as a knowledge base to learn
object co-occurrence but does not contain spatial relationships. The
majority of work using these datasets learns a probability model
over the relationships between commonly-occurring categories in
the images. This model is then used to resolve context ambiguities
in a new image by selecting the most probable label assignment [He
et al. 2004; Rabinovich et al. 2007; Galleguillos et al. 2008].

One way of evaluating the success of this work is to measure how
accurately it labels a set of test images. Labeling objects in images
has a clear analog to the case of 3D scenes, where we are given
a 3D scene and are asked to decompose it into a set of semanti-
cally meaningful 3D objects that we then label. Although this is
one of the most commonly used methods for evaluating contextual
understanding in 2D scenes, we do not focus on this problem in this

paper.

For a model search engine, a more relevant evaluation method is the
Context Challenge [Torralba 2010]. In this problem, the goal is to
determine the identity of a hidden object given only its surrounding
context. Recent work has looked at this problem in both category-
based and category-free frameworks [Malisiewicz and Efros 2009].
In the category-based framework, the goal is to directly identify the

unknown object by returning a weighted set of possible categories
the object belongs to. In a category-free framework, the goal is to
provide a set of 2D objects (represented as bitmaps seen in other
images) that belong in the unknown region. A category-free frame-
work is sometimes advantageous, since many problems can arise
when attempting to categorize the set of meaningful objects. A re-
lated problem to the Context Challenge is scene completion, which
attempts to fill or replace undesired regions in an input image [Hays
and Efros 2007].

The category-free Context Challenge problem, extended to 3D, is
precisely the context-based query we develop in this paper: given a
query box in a 3D scene, return an ordered set of models that belong
at this location. Although there are differences that arise in the 3D
version of the problem, many of the techniques used to solve the
problem in 2D are highly applicable and can be extended to the 3D
case. In 2D, solving problems like the Context Challenge is often
seen as a stepping stone towards 2D scene understanding. In the 3D
case solutions to the Context Challenge find a direct application in
geometric search engines.

3 Dataset

A 3D model database that contains only isolated objects, such as
the Princeton Shape Benchmark, provides no information about the
relationships between objects in real scenes [Shilane et al. 2004].
To learn these relationships, we need a dataset that contains many
scenes, each composed of multiple objects.

Scene databases can largely be grouped into two categories: vir-
tual worlds and “scene design” databases. Naturally, the choice of
database will bias what kind of relationships are learned and may
vary greatly between databases; for example, “axe” and “pillow”
might be more closely related in a fantastical virtual world than in
a scene design database. Using a virtual world as a learning source
has several advantages: the world is often carefully designed by
artists with a specific set of styles in mind that the context query
could attempt to capture, the world is typically very large provid-
ing lots of training examples, and because users can interact with
objects some semantic segmentation or tagging has often already
been performed. Scene design databases, on the other hand, contain
scenes that users have uploaded, often by combining other objects
found in the database. These may contain models ranging from ta-
ble decorations to dorm rooms to spaceship interiors, each with a
wide range of artistic styles and object densities. Ultimately, the
dataset to use for learning spatial context should be drawn from the
target application whenever possible.

3.1 Segmentation

For this paper we use Google 3D Warehouse as our dataset, which
contains both a large number of individual objects and scenes con-
taining multiple objects. First, a set of models was acquired by
searching with keywords that suggested scenes with multiple ob-
jects (“room”, “office”, “garage”, “habitacién”, etc.). In total we
acquired 4876 scenes this way. After downloading the scenes, we
converted them to a COLLADA scene graph. The scene graph of a

typical scene is seen in Figure 2.

The next step is to segment the scene graph into semantically mean-
ingful objects. In these scene graphs, each node may point to any
number of child graph nodes and to any number of child geometry
objects. As can be seen in Figure 2, some nodes such as the Eames
chair represent complete objects. Other nodes, such as the chil-
dren of the Eames chair, represent parts of objects. We make little
attempt to distinguish between whole objects and parts of objects.
All nodes are considered objects, except for a few special cases. We
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Figure 2: Top: Typical scene and its scene graph decomposition
(some nodes omitted for brevity.) Objects are labeled with their
raw node names. Bottom: Scene graph node names and their final
processed set of tags.

ignore some common names that we found to be extremely sugges-
tive of being an object part, such as “plant stem” or “flower petal”.

After segmenting the scene into objects, we find objects that ap-
pear in multiple scenes. We use the term “model” to refer to the
underlying texture and geometry. Each instance of the model is an
object. Models are considered to match, if the following conditions
are met:

e The shape (mesh) must be the same both topologically and
geometrically, up to a rigid transform.

e The material properties must be the same. For models with
textures, the textures must be the same to within a small ep-
silon when scaled to the same resolution.

This means that the same geometry may be found in multiple mod-
els each with different material styles.

One of the major predictors used in image scene understanding is
size. Fortunately, Google 3D Warehouse recommends that the size
of all objects be in inches. We have found that the vast majority of
scenes respect the size metric, so it is easy to extract the absolute
size of each object.

Scenes: 4,876

Scene Graph Nodes: 426,763
Objects: 371,924
Unique Models: 69,860
Tagged Models: 22,645
Shared Models: 10,509

Table 1: Current snapshot of our database. A tagged model is a
model with at least one tag. A shared model occurs in at least two
scenes.

3.2 Tags

Additional information about the object can be inferred from the
names associated with the objects in the scene. In our dataset we
gather naming information from three sources:

1. Scene graph nodes are sometimes named by the artist.

2. The root node of each scene (which corresponds to the entire
file) is named by the artist as it is uploaded.

3. A model can be used in multiple scenes. We union the names
from all instances of the model.

The first step in our tag processing pipeline is to clean up the names
and translate them to English. First, we use Google auto-suggest to
perform spelling correction and word separation (e.g., “deskcalen-
der” becomes “desk calendar”). Second, we use Google Translate
(which can auto-detect the source language) to convert Unicode se-
quences to English words. Finally, non-English words and stop
words are removed.

The second step in the pipeline is to add related words to each word.
For the top 60 most frequently occurring words, WordNet is used
to find “hypernyms” of the word [Fellbaum et al. 1998]. Recall that
hypernyms are enclosing categories of a word; for example, color is
a hypernym of red which is a hypernym of crimson. We start with
the word and follow “direct hypernym” links until a word in a set
of stop categories is reached; we refer to the final set of words as
the tags for that object.

Figure 2 shows a set of scene graph nodes, their raw names, and
their processed tags.

Table 1 gives a summary of the dataset after processing. As we
will show, this is a rich dataset and can be used to learn contextual
relationships between a wide range of objects. We are currently in
the process of obtaining permission to make this dataset publicly
available.

4 Algorithm

We begin by defining some basic terminology for the context query.
We are given a scene consisting of ) supporting objects, already
placed by the user, and a query box with known coordinates where
the user wants to insert a new object. Our goal is to rank each object
in our database according to how well it fits into the query box (see
Figure 1).

Although many of the algorithms used for learning 2D spatial con-
text could be used as the basis for our context query, we chose
to model our algorithm closely after The Visual Memex Model,
because of its focus on the Context Challenge and category-free
learning [Malisiewicz and Efros 2009]. Intuitively, whenever two
objects f and g are observed in scene A, we take this as a sugges-
tion that if we observe an object f' similar to f in scene A’, an
object ¢’ that is similar to g is a good candidate model in scene A’,
provided the spatial relationship between f’ and g’ echoes that of f



and g. At a high level, our algorithm quantifies this concept of ob-
ject similarity and the similarity between the spatial relationships of
two objects, and then uses kernel density estimation over the set of
observed object co-occurrences to determine the final ranking over
all models.

4.1 Observations

We begin by considering all pairs of object co-occurrence across
all scenes, each of which we will call an observation; we refer to
the set of all such observations as O. Each observation has the fol-
lowing parameters: the 3D spatial relationship between the objects,
and the size, geometry, texture and tags of each of the objects. Two
observations are said to be similar if all of these properties are also
similar. We use fs; as an abstract representation of the spatial rela-
tionship between two arbitrary objects s and ¢.

In the next two sections we will define the following similarity func-
tions:

o Kpatial(fst, fuv): determines the similarity between two dif-
ferent spatial relationships. Evaluates to 0 if the spatial rela-
tionships are unrelated, and 1 if they are the same relationship.

® S.i(0size): determines the similarity between objects s and ¢
by comparing their size, geometry, texture, and tags; sz iS
the bandwidth of the size kernel which we will vary based on
the objects being compared. Evaluates to 0 if the models are
unrelated, and 1 if they are the same model.

Following the discussion of these two functions, we will describe
our model ranking algorithm.

4.2 Spatial Relationships

We use a simple model to capture the similarity of the spatial rela-
tionship between arbitrary objects s and ¢t. The model depends on
two distances: the absolute height displacement zs; (along the Z-
axis), and the absolute radial separation 7 (in the XY-plane). Both
are measured between the centers of the bounding boxes of the ob-
jects. These distances have units of length, and we benefit from the
fact that the input scenes use the same units.

We ran a simple experiment, and found that rs; and 2, are largely
uncorrelated. We model the similarity of each distance with a Gaus-

. _ _ 2 2
sian kernel G(z,y,0) = e llz=ylI"/o% "and assume the two kernels
are separable. Our final metric is:

Kspatial(fst7 fuv) = G(Zst7 Zuv, UZ)G(TSty Tuv, Ur) (D

The two bandwidths o and o, have units of length. We choose
both to be proportional to the length of the longest dimension of the
objects being compared (I). Thus, the rate of fall-off in similarity
is proportional to the size of the objects. In this study we used
o, = 0.05] and o, = 0.5], which encourages objects to be aligned
more precisely in z than r.

It would be nice to capture richer spatial relationships between ob-
jects. For example, the chair is in front of the desk, the couch faces
the TV, or the plate is supported by the table. Measuring such re-
lationships requires more sophisticated geometric analysis, such as
the ability to define a consistent reference frame for each object.
We leave such additional analysis for further work.

4.3 Object Similarity

Two objects are similar if both their sizes and models are similar.
We assume that the size and model comparisons are separable ker-

nels, and define the similarity between arbitrary objects s and ¢ as:

Sst(0size) = G(Size(s), Size(t), Tsize) Kmodel (S, t) 2)

To compare the size of two objects, we first sort the x-y dimensions
of the bounding box of each object based on length. We consider
the dimensions of the bounding box of each object to be a vector
in R®. We use the Euclidean distance between these two vectors to
compare the size of the objects.

Kmodel(s,t) measures the similarity between two size-normalized
models. For this paper we use a fixed linear combination of three
functions:

Identical model: The simplest way to compare two models is to
treat them as similar only if they are exactly the same. We denote
exact matches using Kronecker Delta notation, ds¢. This metric
ensures that we will always favor models that have been explicitly
observed in proximity to the supporting objects. A high weight for
this component also can help disambiguate objects that are both
categorically and geometrically similar, such as pots for cooking
vs. pots for planting.

Tags: If two models have a similar set of tags, they may be sim-
ilar. One way of comparing two sets of tags is the Vector Space
Model [Salton et al. 1975]; we use a simpler approach that looks
at the relative overlap of tags. Let T and T} be the set of tags for
models s and ¢:

|Ts NTy|

Kia Ts:T = .
w1 1) = (T 17D

3)

Comparing models based on their tags has the same problems as
using object categories in computer vision [Malisiewicz and Efros
2009]. Two very different types of objects (such as “skirt” vs. “skirt
steak™) may have similar tags. Nevertheless, tags offer a way to
relate two semantically similar objects with very different shapes;
for example, two very different types of “chairs.”

Geometry: There is extensive research on shape similarity, and
many of these methods could be used here. We use the 3D Zernike
descriptors [Novotni and Klein 2003]. These descriptors have the
desirable property that they are invariant under scaling, rotation,
and translation.

Our Zernike descriptor computation closely follows work on auto-
tagging models from Google 3D Warehouse [Goldfeder and Allen
2008]. We first scale the geometry into a unit cube and then vox-
elize it on a binary grid V' that is 128 voxels on each side. We then
thicken this grid by 4 voxels; a voxel in V' is set if there is a voxel
set in V inside a sphere with a radius of 4 voxels. V" is used to
compute a 121 dimensional Zernike descriptor using 20 levels of
moments.

We use the Euclidean metric between two Zernike descriptor vec-
tors as the distance between two shapes. We will use the distance
to the n closest model as an estimate of the local density of mod-
els in the descriptor space. This distance is used to normalize the
distance between two models. Let ds; be the Zernike descriptor
distance between models s and ¢, and let g;(n) be the distance to
the n™ closest model to model 3. Our symmetric kernel between
two models is given as:

7(2&17“)2
ng(a7 b) — ¢ \min(gs(n),9¢(n)) (4)

We chose the minimum value of g;(n) (corresponding to the re-
gion of greatest density) as our normalization term. This prevents



an object that lies outside any cluster from forming a geometric as-
sociation with an object inside a good cluster. The results in this
paper use n = 100.

Our final model comparison kernel is taken as:
Kmoder(s,t) = 0.105¢ + 0.6 Ktag(Ts, Tt) + 0.3Kgeo(s,t)  (5)

To make inference in our database easier, we zero out this model
term if it is less than a small epsilon (¢ = 1079).

For our database, modifying these weights does have a noticeable
effect on the results. While the geometry term was found to be
informative (see Section 5.5), we weight tags higher than geometry
for two reasons. First, for semantic categories with a high degree of
structual variability, such as desks, geometry will be less useful than
tags for forming good associations within that category. Second, in
our database many different models are geometrically similar. For
example, a large number of models are textured boxes or planes,
and weighting the geometry term highly will make these models
appear similar when they might not be. Although tags can also
suffer from the homonym problem, we found this to be much less
common than for geometry.

4.4 Model Ranking

We can use these two similarity metrics to estimate the probability
that an object would appear in the context of other objects. We
first define this probability for the case where the support scene
contains only a single object b. Specifically, we need to compute
the probability of placing an object a in the query box. Objects are
ranked by their probabilities of being in the box.

‘We model this probability using the following conditional distribu-
tion:

plalb, far) o< Y Sev(00)¥(a,c, fav) 6)

ceM

Z o Sau(01)Sev(02) K (faby fuv)
U(a,c, far) = (u,v)€ S5 oI5(o) @)

(u,v)€O

Here, ¥(a, ¢, fap) is the pairwise compatibility between objects a
and c¢. M is the set of objects in the database and O the set of
observed object pairs.

This inference algorithm closely follows that used in the Visual
Memex. The summation in Equation 7 can be seen as a weighted
sum of kernels, one for each observation. The weight of each ker-
nel, Sq.Sey, measures the similarity between the object pair under
consideration (a, ¢) and the arbitrary object pair (u, v).

The parameters oo, o1, and o2 control how contextual informa-
tion propagates between objects of different sizes. These have units
of length and are chosen proportional to the length of the longest
dimension of the objects being compared (I). We use o9 = 21,
o1 = 0.2[, and o2 = 2[. The small value of o; places increased
emphasis on finding objects that are close to the size of the query
box, while the larger values of oo and o2 permits objects of large
size variation to contribute context neighborhood information. In-
creasing the value of o1 denotes increased uncertainty in the size of
the user-specified query box; as this value approaches infinity the
size of the query box becomes irrelevant.

Models are more highly ranked if they have the same size as the
query box. We evaluate all models in sorted order, starting with
the model whose size is closest to the query box size. At some

Monitor vs. Keyboard Monitor vs. Chair

Probability
Probability

N~ ) v S~

0 2 4 6 8 10 » 1 1 ) 2 s 6 s 0 » 1 1

Radial Separation (meters) Radial Separation (meters)

Monitor vs. Couch Monitor vs. Bathtub

Probability
Probability

o 2 6 8 0 2 u 1 o 2 6 s 0 n n .

Radial Separation (meters) Radial Separation (meters)

Figure 3: Density estimation as a function of radial separation
between objects. A representative object of each class was chosen,
and Equation 6 was computed as a function of the radial separation
between the objects. The shape of these curves approximates the
expected relationship between these objects.

point, the size kernel term will be essentially zero and it is likely
not worthwhile to evaluate these models. The number of models
that need to be evaluated depends on the value of o1, the density
of objects around the query box size, and how many results are
desired. For all the queries in this paper, we ranked all models in
the database and found that the top 24 results were always in the
first 2000 models, so we choose to restrict our search to this set.
More models may need to be evaluated in databases with extremely
dense size regions, if less emphasis is placed on the size of the query
box, or if more than 24 results are desired.

Figure 3 provides a visualization of Equation 6. In this example,
we plot the probability that a keyboard, chair, couch and bathtub
are near a monitor as a function of the radial separation. Note that
a keyboard has a high probability of being near a monitor, but is
not likely to be far from the monitor. Examining the plot for a
chair, we see there is interesting structure. First, chairs are further
from monitors than keyboards, and can also be found at larger radii.
Couches and bathtubs are much more common at large radii than
close to monitors. This shows that our algorithm is able to learn
some of the structure in the scenes.

We presented Equation 6 for the case of only one object in the
scene. One natural assumption to make in the case of multiple
support objects is to assume p(alb, fap) is independent between
all support objects b, in which case we would simply compute the
product of this term for all supports (this is the assumption made by
the Visual Memex.) We have found that this tends to unfairly pe-
nalizes objects that are mostly found in partial scenes, which may
have many support objects where this probability score is effec-
tively zero. Instead we compute p(a|b, fqp) for all @ support ob-
jects in the scene, and store these in a list P for each object a, sorted
from most to least probable. Our final model score is then taken as
a product over the ¢ strongest supporting objects in the scene (we
use ¢ = 5:)

q

p(a|b1, bk fab1 s "'fabK) o H P; ®)

i=1

To make queries in scenes with many small objects tractable, we
use a simple heuristic that the most contextually informative objects
are often either large (ex. furniture) or close to the query box. If
d is the distance from a support object to the query box and 7 is
the radius of the bounding sphere of the support object, we skip the
computation if » < 0.05d.
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Figure 4: Comparing keyword and context search. Top: Front page
search results for “fork” in Google 3D Warehouse. Middle: Results
of a context search in our database for a query box placed on a
table. Bottom: Filtering the results of the context search for models
with the “fork” tag. A search engine which can look at the target
context and size can better discern the intent of the user’s query,
especially for keywords with multiple meanings.

5 Results

5.1 Context Search vs. Keyword Search

One application of our algorithm is to suggest models to a user who
wishes to add another object to a scene. For example, imagine a
user who is modeling a dining room table and wishes to add a fork
to it. One current approach is to use keyword search. To find a
model, the user searches Google 3D warehouse using “fork” as a
query term. The results returned are shown in Figure 4a. Using our
system, the user searches for models using a context query. The
query is generated by selecting a 3D bounding box on the dining
room table. The context query returns the results in Figure 4b.

Figure 4a shows that a keyword search can have trouble returning
a useful list of models. The keyword search was unable to deter-
mine what sense of the keyword “fork” was appropriate. In this
case, the result set included only one table fork; the other eleven
objects represent other senses of the term “fork” including “fork
lift” and “bicycle fork.” Although tuning forks are plausible, fork
lifts cannot be placed on dining room tables. In contrast, the context
search returned four table forks (Figure 4b). Since no keyword was
given, small objects like pens and brushes were also returned. All
the objects could be sensibly placed on a dining room table. Finally,
Figure 4c show the results of doing a context plus keyword query
search. In this example, the result set was all table forks, except for
one extraneous model.

5.2 Adapting to Context

Figure 5 shows the results of a context query when the scene con-
sists of a single object, in this case a desk. The top row shows the
results for a query box in front of the desk. For this query, 21 of
the top 24 results are chairs. The middle row shows the results for a
tall box on the side of the desk. Here the context query returned 17
floor lamps. These two queries demonstrate the algorithm’s ability
to find different types of models using different contexts. The bot-
tom row shows a query to find an object resting on the desk. This
query can be satisfied by many different types of objects. Quantify-
ing the relevance of these results is more challenging; nevertheless,
there at least four distinct categories of results that are relevant.
These include lamps, plants, goblets, and vases.

It is interesting to note that in all three example queries, the high-
est rated result (the one in the upper-left corner) would be a very
plausible result for the given context. If the user requested a single
result be immediately returned (by pressing “I’m feeling lucky”),
they would not be disappointed.

5.3 Multiple Supporting Objects

We ran an experiment to test the effect of adding contextual ob-
jects to the scene. In this case, the user wanted to model a kitchen
counter. The top row of Figure 6 shows the results of the query
with only a sink as context. The query returns five sinks, and sev-
eral other relevant models including a toaster oven, a mixer and a
vase, and a few undesirable models such as a printer and at least
five objects that are not meaningful. We now add a second ob-
ject, a blender, to the scene, and reissue the query. The additional
context significantly raises the rank of the three microwave mod-
els, and slightly increases the rank of the blender, toaster oven, and
vase models. It also removes the printers and three meaningless ob-
jects. Overall the combination of the blender and sink noticeably
improved the quality of the results.

5.4 User Evaluation

It is difficult to rigorously evaluate a context search algorithm be-
cause so much of it depends on both human perception and user
intent. We made five test scenes, each with a single associated con-
text query, and ran our algorithm to get 500 search results for each
scene. The number of supporting objects in the scenes ranges from
one to fifty. We created a candidate set of models for each scene by
taking the union of our 500 search results with the 1000 objects in
the database whose size is closest to that of the query box. Users
were then presented with each model in the candidate set in a ran-
dom order and asked to decide whether the model was relevant to
the context query. Our user base consisted of five males and four
females, none of whom had any formal design experience.

The results of this study were used to estimate the set of relevant
models for each query: we assume that the models marked as be-
longing in the query box by at least half of the users are the only
relevant models in the database. Note that we have not evaluated
the complete set of relevant models because we have only presented
users with a subset of models in the database. This may miss some
relevant models and biases our results in favor of our algorithm.

Given our search results and a relevance set for each scene, we
plot a precision-recall curve to evaluate the quality of our re-
sults. The solid curves in Figure 8 show this curve for each scene.
These curves demonstrate that even without keywords, context-
based search can successfully favor relevant models. In all five
scenes the algorithm returned 50% of the relevant models with a



Figure 5: Context query results with a desk as the only supporting object. Left: The user places a query box in the vicinity of the desk. Right:
The top 24 search results for each query. When models with identical geometry but different textures occur, only the first result is shown.
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Figure 6: Benefit of additional supporting objects. Top: The user places a sink into an empty scene and asks for an object four feet away.
Bottom: The user places a blender in the scene between the sink and the target object, and repeats the same query.
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Figure 7: Comparing results with and without database tags. Left: User performs two context queries; one for a chair in front of a dining

room table and one for an object to go on a side table in a crowded scene. Middle: Results after discarding all tags in the database. Right.
model similarity.

Results using the database with tags. The algorithm can still perform reasonable inference using only geometric relationships to determine
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Figure 8: The solid curves show the precision-recall curve for our
algorithm on five test scenes. The relevance of each model was
determined by surveying human subjects. The dashed lines show
the expected precision-recall curve if the candidate model set had
been presented to the user in a random order.

precision of at least 35%, which implies that at least one in every
three models was desirable.

To provide a comparison point for our search results, we computed
the expected precision-recall curves after randomizing the models
in each candidate set and using this as our final ranking. These are
the dashed curves in Figure 8. All of these curves have a precision
between 10% and 20%. Because the candidate sets select highly
for the size of the objects, these results can be taken as an approxi-
mation of the performance of a size-only search engine.

The fact that our algorithm provides a noticeable improvement over
a random ordering of the candidate set indicates that context pro-
vides some useful information. The actual information gained from
context information compared against just the bounding box size
will depend heavily on the scene and the density of objects in the
database around the size of the query box. As a concrete example
of the advantage of context information, a direct size-based ranking
for the top query in Figure 5 would contain 8 toilets in the top 24
results.

5.5 Tags

A major feature of our algorithm is that we can take advantage of
the semantic information contained in tags. To test the power of
this feature, we created two databases, one with tags and one with-
out tags. The one without tags was created from the same input
database by removing all tagging information, and dropping terms
involving tags from the ranking function. Figure 7 compares the re-
sults returned after searching the two databases. In the query for the
dining room chair, both the tagged and untagged databases found
chairs to be a dominant category. However, the results from the
untagged database returned three clearly irrelevant results: a cof-
fee table and two bathroom sinks. For the multi-object scene, the
untagged database returned models such as the top half of a floor
lamp, which is geometrically similar to a relevant category (desk
lamps) but cannot be placed on the side table. We conclude that
tagging can improve the search results, but that geometric infor-
mation alone works quite well. This leads us to believe that our
algorithm would work even on databases without tags.

The additional predictive ability of tags depends on the relative im-
portance of geometric (proximity and size) vs. semantic informa-
tion. Size and proximity are strong contextual cues. If the semantic

information is not reliable, geometric information may work better
alone. However, semantic information, if reliable, can add addi-
tional contextual cues. Tagging also facilitates the combination of
spatial and keyword search.

5.6 Failure Cases

Although our algorithm does a reasonable job of returning relevant
models, there are several failure modes that will cause an irrele-
vant model to be ranked highly. First, an object may be geomet-
rically very similar to a relevant object but semantically very dif-
ferent. Likewise, an irrelevant object may have the same tag as a
relevant object. For example, the model in Figure 6, 1* column, 3™
row, is tagged as “channel mixer”. It is not a very relevant model to
the query, but is both geometrically similar to a microwave model
and shares a tag with the “mixer” model, both of which are relevant
and appear in the top 24 results. Another failure mode can occur
because our spatial relationships are overly simplistic. For exam-
ple, in the top query in Figure 5, the three box-shaped objects are
not very relevant at the selected location, but were ranked highly
because they were found on the side of desks and our spatial rela-
tionships do not consider orientation.

5.7 Performance

We perform some simple tests to evaluate the performance of our
implementation of the algorithm. The total time it takes to respond
to a context query is roughly linear in both the number of supporting
objects and the number of candidate objects that are considered. In
all cases we use 2000 objects as our set of candidate objects. The
task is very easy to distribute across multiple processors because
each computation of Equation 6 is independent. These tests were
all run using a multithreaded implementation of our algorithm on a
quad-core 2.67GHz Intel Core i7 with hyperthreading enabled. The
average query time for three tests scenes, each with a single support
object was 0.094s. Using three test scenes each with thirty support
objects, the average query time was 1.73s. We feel these results
are sufficiently fast for interactive use, although different parameter
choices (such as placing less emphasis on the size of the query box)
will increase the computation time because more objects will need
to be evaluated.

6 Discussion and Future Work

We have shown that context search can improve scene modeling
tools. First, context search returns more relevant objects to the user
than traditional keyword search. Although we do not have exper-
imental data, we conjecture that it is just as easy to use. Placing
a query box is quite easy, and would need to be done anyways to
place the object in the scene. The user is also not required to think
of good keywords, and only needs to provide them to refine the re-
sults. Second, we have observed that users already tend to construct
scenes in a contextually relevant order; as Figure 5 demonstrates, a
desk says quite a lot about the objects around it, and in practice, a
user is likely to place the desk very early in the modeling process.
To summarize, we believe forming context queries is a natural pro-
cess and leads to more relevant search results.

The quality of the results could be improved by enhancing our
methods for processing the scene database. One of the biggest im-
provements would be a better algorithm to segment the scene graph
into meaningful objects. Likewise, improved tagging, either from
crowdsourcing or autotagging methods, would facilitate learning
semantic relationships.

We could improve the system further by extracting more meaning-



ful spatial relationships between objects. We currently consider
only the radial separation between objects, and not their angle of
separation, which would require defining a reference orientation for
each object. Extracting relationships such as “resting,” “hanging,”
“inside,” or “in adjacent rooms” remains to be explored.

This work is quite similar to recent attempts to use spatial context in
computer vision. If computer vision systems could reliably extract
precise spatial relationships between objects, we could use that in-
formation to help place objects in synthetic scenes. An advantage
of using photographs is that there are many more photographs than
3D scenes. Our methods for finding relationships between objects
may also help computer vision systems by providing good priors
about the spatial relationships of objects in the 3D world. Thus,
methods from graphics and vision could be combined synergisti-
cally. We plan on making our dataset publicly available to help
facilitate exploring the relationships between the 2D and 3D scene
understanding problems.

In this paper we have used Google 3D Warehouse, which is a gen-
eral model repository containing many different scenes with differ-
ent styles. Virtual worlds, in contrast, usually have a strong artistic
style from a particular place and time period. Our tools for prepro-
cessing the virtual world dataset would presumably learn the par-
ticular style of that virtual world. This would make it easier for the
artist to extend the world, while maintaining the existing style. We
have done some preliminary work in extracting datasets from Sec-
ond Life and World of Warcraft, and the results are very promising.

There are many other applications of context information beyond
what we have shown in this paper. As a simple example, being able
to choose a default orientation for a newly inserted object can save
an artist time in placing the object. A more challenging problem
is for the system to suggest objects to add without placing a query
box. For example. after the user places a bed, they are very likely
to want to place a pillow on the bed. A long range goal of scene
modeling would be to intelligently perform complex actions such
as “decorate this partially modeled dining room using the keywords
turkey and thanksgiving” or “model this room after a photograph I
took last thanksgiving.” In this paper we have made a small step
towards this goal.
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