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Abstract

We present a method that transforms an unstructured vector design into a logical hierarchy of groups of objects. Each group is a
meaningful collection, formed by proximity in visual characteristics (like size, shape, color, etc.) and spatial location of objects
and models the grouping principles designers use. We first simplify the input design by partially or completely flattening it and
isolate duplicate geometries in the design (for example, repeating patterns due to copy and paste operations). Next we build the
object containment hierarchy by assigning objects that are wholly enclosed inside the geometry of other objects as children of
the enclosing parent. In the final clustering phase, we use agglomerative clustering to obtain a bottom-up hierarchical grouping
of all objects by comparing and ranking all pairs of objects according to visual and spatial characteristics. Spatial proximity
segregates far apart objects, but when they are identical (or near identical) designers generally prefer to keep (and edit) them
together. To accommodate this, we detect near identical objects and group them together during clustering despite their spatial
separation. We further restrict group formation so that z-order disturbances in the design keep the visual appearance unaffected
for tightly-overlapping geometry. The generated organization is equivalent to the original design and the organization results
are used to facilitate abstract navigation (hierarchical, lateral or near similar) and selections in the design. Our technique
works well with a variety of input designs with commonly identifiable objects and structural patterns.

CCS Concepts
• Applied computing → Document analysis; • Information systems → Clustering;

1 Introduction and Related Work
Modern day vector designs are complex and are built by putting
together several smaller artwork objects. The constituent artwork
objects are sometimes created from scratch (in vector editing tools
like Adobe Illustrator), while at other times they are imported from
external sources (e.g. SVG, EPS, PDF, etc. exported from tools like
PowerPoint). These often lack a structural arrangement of individ-
ual vector objects that comprise the imported graphic or artwork
components. Collaborative environments offered by modern vector
graphic tools allow several designers to work together to produce
various pieces of an artwork that are assembled later. This can fur-
ther complicate the organization and sense in a design which makes
it hard to select or manipulate objects and object collections.

Several hierarchical clustering mechanisms have been proposed
in the literature. The two widely adopted ones are agglomera-
tive [ZMRA13] and divisive [Rou15]. While the former performs a
bottom-up merger of objects, the latter starts from the top and re-
cursively splits down the hierarchy. However, these methods have
been mostly used for statistical inferences or data mining. Several
challenges prevent their direct application to vector graphics. First,
artists can structure the same vector graphics document in many
different ways. The objects are free-form and largely a reflection of
designer’s creativity. This requires specialized similarity analysis

for objects. Second, the definition of similarity is different for dif-
ferent designers - some prefer closely placed objects to be grouped
while others like objects with similar color to get higher empha-
sis while clustering. Third, free movement of vector objects up and
down the hierarchy must be restricted or it may visually alter the
artwork. Re-arrangement of an object is only possible if that does
not impact its visual z-order with respect to others in the design.

Structural, regularity and similarity analysis of graphical patterns
has been extensively studied and used for clustering. Color con-
trast has been used to detect salient regions in images [CMH∗14].
Symmetry detection has been proposed to segment images into
similar local regions [BSGF10, LSS∗17, CMZP14, KR91]. Affin-
ity based methods work with boundaries and edges in natural im-
ages [AMFM11, ZD14]. In [LZH∗17], the authors propose a deep
learning based method, where two tiers of the network respectively
focus on local neighborhoods and global structures appearing in an
image. The network requires a decomposition of input image into
known atomic elements, and a post-processing phase uses the en-
coded descriptors to create clusters of these elements. Results show
reasonably accurate groupings of non-organic atomic elements. In
vector graphic designs, however, there is inherent knowledge of ob-
jects and object boundaries. There also are designer created visual
characteristics like stroke weight (and color), and peripheral dis-
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tance between objects. This data often provides a more precise in-
sight into designer’s perception of inter-object co-relation as com-
pared to deducing the same information from their derived rasters.

Thus, we present an orchestration of agglomerative clustering
that makes it suitable for vector graphics. Instead of inferring struc-
tural similarities, we work with the inherent visual and spatial char-
acteristics in the design. We also introduce containment and chain
reaction, and augment clustering with constrained movement of
objects (owing to z-order restrictions). Containment builds logi-
cal segregation in the design allowing different similarity metrics
(color, shape, size, etc.) to dominate in different parts of the same
design. While spatially far apart objects are generally meant to be
kept in different clusters (they have a low score on placement met-
ric), but nearly identical objects like keys of a keyboard should
be placed together despite the distance between extreme keys. So,
we build logical chains of near identical objects and any object of
the chain while being placed inside a cluster pulls the entire chain
along (chain reaction). Finally, visual bounds of objects are cross-
checked with others above or below it and clustering is disallowed
if an overlapping object at the front would go back or vice-versa.

2 Our Solution
We present an agglomerative clustering technique that determines
designer’s intent in a given vector design and re-organizes artwork
objects into a meaningful hierarchy of groups. Our solution oper-
ates in three phases: pre-processing, containment and clustering.

2.1 Pre-processing
Vector designs exist in many forms. Some are partially organized
while others need complete rearrangement. We provide three op-
tions (via a user interface) to the designers: retain existing groups,
retain named groups and no retention. The first option does not
disturb any existing groups, i.e. no clustering is performed inside
existing groups (and their internal organization is preserved verba-
tim), but they participate normally in cluster formation up the hier-
archy. For the rest of this text, we refer to these as complete groups.
The second option treats explicitly named user groups as complete
groups, but the unnamed ones are flattened and their content is con-
sidered for clustering. The last option expands the entire design and
clustering is executed on a flat initial arrangement of vector arts.

Some content may frequently recur in a design and be a natural
candidate for grouping. We process such content by detecting du-
plicate geometries in the design and placing them into organized
complete groups. Thus, all duplicates can reuse the same internal
organization. Note that duplicates are not just exact replicas but
also affine transformations (i.e., rotation, scaling and translation)
of replicas. For our solution, we use the method from [DBPD20].

2.2 Containment
Often, a designer visually places objects within others. An exam-
ple is a face containing eyes and mouth. Even though eyes do not
have the same color or shape as mouth, the designer expects to put
them all under the group for face. In these cases, visual similar-
ity like color and shape may take a back seat to the shape hierar-
chy. To make this goal concrete, we introduce the concept of con-
tainment, where we find objects which are confined within visual
bounds of larger objects. We create a special group (called a con-
tainment group), which is an aggregation of the larger object and

the smaller ones it contains. For example, in the artwork of a face,
the containment group contains the face, both eyes and the mouth.

In the containment phase, we make a single bottom-up pass on
the entire design (in the initial designer arrangement) and create
containment groups for the objects fully contained inside others.
These groups can be hierarchical, in case a designer creates mul-
tiple levels of objects that are visually confined within the bounds
of others. We also create a root containment group, sitting at the
top of the design, that encloses all other containment groups and
independent un-contained objects. Containment groups differ from
complete groups as we look inside them and perform clustering (as
defined in section 2.3). However, when an organized containment
group is considered in its parent, it is treated as a complete group.

Each containment group is isolated from others and thus differ-
ent basis of internal organization can be used for them. One con-
tainment group can be organized on color similarity while the other
on the basis of shape similarity. This gives local influence to our
system and is synonymous to how people observe similarity.

2.3 Clustering

Agglomerative clustering [ZMRA13] is the final phase of our so-
lution. At the start of this phase, all objects lie inside containment
groups (root containment group or a nested one). As this phase pro-
gresses, more groups are formed on the basis of object similarity.

Usually, agglomerative clustering is performed bottom-up
among all available objects. However, that approach does not gen-
erate desired results for vector graphics. This is because vector de-
signs widely vary and no single clustering criterion works for all.
Even within one design, different areas focus on different aspects.
Some areas exhibit excessive co-relation (among objects) in color,
while others have high co-relation in shape and size. Thus, we run
multiple parallel instances of bottom-up agglomerative clustering
(each limited to a containment group) and allow each instance to
figure out its own criterion for clustering.

For better understanding, we classify the objects as following -

1. Complete groups: These are the groups generated by the pre-
processing phase. They are either a result of duplicates isolation
or are chosen to be so by the designer. No clustering is per-
formed inside them. But they are treated as pre-defined clusters.

2. Containment groups: These groups are produced by the con-
tainment phase. They contain other objects (all four types) that
lie within their visual bounds. Clustering is performed within
these groups only and a hierarchy of sub-groups (called clus-
ters) may be produced.

3. Independents: These are non-group objects that lie within con-
tainment groups. Examples of such objects are images, Bezier
paths and text.

4. Clusters: These are the groups that are produced during clus-
tering. These are essentially an organization of the four object
types described here.

Within each containment group, we quantify and compare ev-
ery pair of objects (groups and independents) on a common feature
space of important vector descriptors (color, stroke, size, shape and
spatial placement). Two objects are considered at a time and a nor-
malized comparison score (in the range [0− 1]) is computed for
each of these descriptors. A weighted average of these descriptor
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scores gives the final comparison score of the object-pair (section
2.3.1). Once the comparison data of all object-pairs is produced,
this similarity information is used to form clusters (section 2.3.2).

2.3.1 Object Similarity Evaluation
Object similarity is an important criterion for designers to group
objects together. Similarity can be perceived from color, or size, or
any other visual attribute. In our study of vector designs, we find
that most designers like to organize content with one or more of the
following vector descriptors - color, stroke, size, shape, and spatial
placement. While color refers to the fill of a vector object, stroke is
multi-dimensional and encapsulates parameters like stroke-width,
line-cap, line-join, dash-array and stroke-color. Size is the area of a
two-dimensional vector object, shape is an impression of the outer
periphery of a vector object and spatial placement refers to how
close two objects are (in a design) relative to other object-pairs. For
brevity, we limit the discussion on choice of these descriptors and
their evaluation formulae, but those can be found in the accompa-
nying supplemental material.

The scores produced by all our descriptors lie in [0− 1]. How-
ever, the range of these descriptors depends upon object properties
and thus could differ i.e. scores from one descriptor may be limited
to the range [0.5− 0.7] while another may vary from [0.1− 0.9].
This imbalance has the potential to influence rest of the algorithm
and bias the output towards descriptors with higher range. Thus, we
bring all descriptors to the same scale by normalizing their scores
and rescaling their ranges to [0− 1]. We use Min-Max Normaliza-
tion for all our descriptors. It is given by the following formula -

Sk =
Uk−min∀k Uk

max∀k Uk−min∀k Uk

where, U and S respectively represent un-normalized and nor-
malized score. k indexes all scores of a descriptor.

Our score computation is symmetric. In other words, all descrip-
tors return the same result for object-pair (oi,o j) and its inverse
object-pair (o j,oi). Thus, we use an upper diagonal matrix to keep
scores (for all object-pairs), and save memory and evaluation time
by computing just one permutation for every pair of objects. The
final comparison score (Goi,o j ), of a pair of objects (oi,o j) is com-
puted as a weighted average of their normalized descriptor scores:

Goi,o j =
∑

5
n=1 Wn ∗Snoi ,o j

∑
5
n=1 Wn

where Wn is the weight of nth descriptor and Snoi ,o j
is the normalized

score of object-pair (oi,o j) on that descriptor. n indexes the array
of descriptors [Color, Stroke, Size, Shape, Spatial Placement]. In
practice, we also optionally allow artists to adjust or disable the
per-parameter weight for each category, allowing them to control
the types of groups that are created by our method.

For computing descriptor weights, we statistically analyze un-
normalized scores (i.e., before min-max normalization) for each de-
scriptor (over all pairs of objects) and find the variance within each
descriptor. Recall that these scores lie in [0−1]. Weights are influ-
enced relative to this variance – for example, if every object (within
a containment group) is colored blue, then we discard the color
when determining object similarity. To account for this, we keep a
threshold and if a descriptor’s variance is less than the threshold,

its observed weight is set to zero. In our implementation, we sup-
press any descriptor with less than 15% variance. The weight of a
descriptor (W ) is given by the following formula -

W =

{
0, if max∀k Uk - min∀k Uk ≤ 0.15
1, otherwise

The above text describes how descriptors are evaluated for a pair
of independent objects. In case, one or both of the objects in the
pair are groups, we do the following -
1. for complete groups: these groups are treated as images and

thus rasterized. All descriptors are evaluated by assuming these
groups to be independent raster objects.

2. for containment groups: stroke, size, shape, spatial placement of
the group are computed from the containing object of the group.
On the other hand, color is computed from the group as a whole
by rasterizing it into an image.

3. for clusters: a single linkage paradigm is used, which means
that the score of the group is same as the score of the child that
yields maximum similarity. We experimented with both single
and complete linkage and empirically found that single linkage
tends to produce more salient clusters.

2.3.2 Grouping Similar Objects
Once the scores are computed, the next step is to insert all object-
pairs in decreasing order of their scores into a priority queue. At the
start of clustering, the priority queue contains independents, com-
plete groups or containment groups. As we make progress with this
algorithm, we form clusters of these objects and they also enter as
object-pairs in this priority queue. The complete clustering algo-
rithm is described below -
1. Pop the top element off the queue, which corresponds to the pair

of objects that have maximum similarity.
2. Two possibilities exist depending upon the type of objects in the

object-pair popped off the queue -
a. both are independents/groups or both are clusters: If the ob-

jects appear next to each other (in the z-order defined by
the designer), a new cluster is created and both the objects
are put inside that (maintaining their relative z-order). Oth-
erwise, we can not do this clustering as this could alter de-
signer’s z-order and change appearance of the design. Thus,
we try to re-arrange the objects such that they appear next
to each other in z-order and the design remains visually un-
changed. If the re-arrangement is feasible, both objects are
clustered. Otherwise, this clustering is denied and the algo-
rithm moves to step 5 to find the next available object-pair.
The re-arrangement process is described after this algorithm.

b. one is a cluster and the other is an independent/group: A
recursive lookup is performed inside the cluster to find the
object with maximum similarity (i.e., single linkage) with
the input independent/group object. The objective is to move
the independent/group object next to the maximum similar-
ity object. However, re-arrangement restrictions apply in the
same way as described for the previous case. Thus, the maxi-
mum similarity object that can become a sibling without dis-
turbing design’s visual perception is found and used.

3. In case a new cluster is formed (or an object is moved inside an
existing cluster or clustering is denied) in the last step, we need
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to update the upper diagonal matrix (storing similarity scores
for object-pairs) and reflect the update in the priority queue by
removing the rows/columns of all objects from the matrix and
inserting the new cluster in the matrix. Scores of all other ob-
jects are computed with respect to this new cluster and the cor-
responding matrix entries updated.

4. If an object is moved inside a cluster, we perform chain reac-
tion by finding other nearly similar objects (i.e. more than 95%
similar on all metrics except distance) and moving them into
the same cluster. The motivation here is that designers prefer
far away alike objects (that otherwise may have low similarity
score owing to distance) to be clustered together. The process is
repeated for newly found objects till no more are near similar.

5. Repeatedly pop object-pairs off the queue until it is empty or
all remaining object-pairs are denied clustering. This can hap-
pen due to re-arrangement limitations or if the similarity score
between top object-pair is too low (defined as 30% of the maxi-
mum similarity score at the start of this algorithm).

Objects that are not placed next to each other need to be re-
arranged before they are allowed to form a cluster (step 2 above).
However, objects can’t freely move up and down the hierarchy as
that would bring backward objects up-front or vice-versa, thereby
changing the visual appearance of the design. Thus, while re-
arranging objects A and B, we use the following approach -

1. Move object A towards B: Hop over one intermediate (between
A and B) object C at a time. If there is no overlap between A and
C, swap them. Continue doing so, till we reach B. In this case,
re-arrangement is successful and complete. Otherwise, keeping
A at its new location (i.e., just before C) go to the next step.

2. Move object B towards A: Start moving B towards C (from the
last step), hopping over one intermediate object at a time. If B is
able to swap itself with all intermediates and reaches next to A,
re-arrangement is declared successful. Otherwise, it fails.

We evaluate our solution on a variety of vector designs created by
different designers. An example is shown in figure 1, where we start
with a flat unorganized design and form meaningful clusters for
paper bags, bowls, hats, plates, and other objects. Further details on
this and additional example designs with corresponding generated
arrangements can be found in the supplemental material.

Chef hat
Group

Bottle Group

Bowls Group

Plates Group
Wine Glasses Group

Jars Group

Paper
Bags

Group

Figure 1: Clusters created by our algorithm (for the shown art-
work) are in dark grey boxes with green labels and black pointers.

In addition to automatically creating object arrangements, our

method can be used to build advanced navigation through designs.
We can execute clustering in the background and allow designers to
use left/right arrow keys to iterate through sibling objects (keys in
the keyboard in figure 1), or up/down arrow keys to traverse through
parent/children (keys, keyboard, desk, etc. in figure 1). The ability
to enable such simple navigation even when it is not present in the
original structure of a vector graphics file is a key application of
our automatic clustering approach. Additionally, our method can be
used for similarity detection and collectively editing similar objects
post selection. A designer can select (and subsequently edit) similar
objects through a proximity slider (for color, shape, size, etc.) that
specifies permissible variation in a metric.

3 Conclusions
We present an orchestration of hierarchical agglomerative cluster-
ing, adapting the standard algorithm to vector graphics clustering.
We introduce containment and chain reaction to make our algo-
rithm more robust and sensitive to the needs of vector graphics. Our
algorithm dynamically adapts the clustering criterion, allowing dif-
ferent portions of the vector design to cluster on different aspects
of similarity, i.e. one part of the design may group objects on the
basis of their color proximity while the other part reflects empha-
sis on shape or size. Our method can also be used for proximate
selection, and advanced navigation through objects in the design.
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