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(a) 2D, Complex Shape

(b) 2D, Adaptive Resolution (c) 3D, Complex Shape with Colors

Figure 1. DMesh++ for complex 2D and 3D shapes. (a) DMesh++ can reconstruct complex 2D drawings from sample points extracted
from them. (b) In 2D, DMesh++ can produce efficient yet accurate meshes that adapt to local geometry. (c) DMesh++ can also reconstruct
complex 3D shapes with colors from point clouds and multi-view images. For each result, the “imaginary” part is rendered in gray, while
the “real” part, which defines the final mesh, is rendered in other colors (Sec. 3.1). In (b), the tone of the color represents the edge length.

Abstract

Recent probabilistic methods for 3D triangular meshes capture
diverse shapes by differentiable mesh connectivity, but face high
computational costs with increased shape details. We introduce
a new differentiable mesh processing method in 2D and 3D that
addresses this challenge and efficiently handles meshes with intri-
cate structures. Additionally, we present an algorithm that adapts
the mesh resolution to local geometry in 2D for efficient repre-
sentation. We demonstrate the effectiveness of our approach on
2D point cloud and 3D multi-view reconstruction tasks. Visit our
project page (https://sonsang.github.io/dmesh2-project) for source
code and supplementary material.

* This work was done during internship at Adobe Research.

** The paper was last modified on Dec. 20th, 2024.

1. Introduction

Among various possible shape representations, a mesh is
often favored for a wide range of downstream tasks due
to its efficiency, versatility, and controllability. A mesh is
defined by its vertices’ position and their connectivity in
the form of edges and faces. This connectivity is discrete
in nature, and also the number of possible connectivities
grows exponentially with the number of points, which pre-
vents meshes from being fully differentiable shape repre-
sentations. To address this, recent data-driven efforts have
attempted to predict mesh connectivity using Transformer-
based models [5, 6, 11, 35, 36]. However, these methods
face inherent challenges with robustness to outlier meshes,
potential self-intersections, and high computational costs.

On another route, Son et al. [37] introduced a new form
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of differentiable mesh called DMesh, which is essentially
a probabilistic approach. For a given set of points, they
explicitly compute probabilities for possible face combina-
tions to exist on the mesh. This approach guarantees mesh
without self-intersections, and is free from outliers, as it
is not data-driven. Therefore, this probabilistic approach
opens up a new venue to adopt meshes in a machine learn-
ing pipeline, such as generative models [41, 45]. However,
it suffers from excessive computational cost when the num-
ber of points increases (Fig. 6), which limits its applicability
for representing complex shapes with detailed structures.

In this work, we introduce DMesh++, which overcomes
the computational limitations of DMesh while retaining its
core advantages. To that end, we present Minimum-Ball al-
gorithm. This algorithm uses minimum circumscribing ball
of a face to compute its probability. While the computa-
tional cost to evaluate face probability is O(N) for DMesh,
where N is the number of points that define the mesh, our
Minimum-Ball algorithm has O(logN) computational cost
under practical scenarios (Sec. 3.2 and Fig. 6).

The direct application of DMesh++ is a reconstruction
task. Using Minimum-Ball algorithm, we can reconstruct
complex 2D and 3D meshes (Figs. 1, 7 and 11) efficiently
within a reasonable time-frame. At the same time, as the
reconstructed mesh usually has lots of redundant faces, we
propose Reinforce-Ball algorithm to remove them, and pro-
duce an efficient mesh for 2D cases (Sec. 4.2). It is designed
to optimize the probability of a point’s existence, and mini-
mize the number of points while keeping the geometric ac-
curacy (Tab. 1 and Figs. 1 and 8). Additionally, we propose
several other novelties in reconstruction process (Secs. 4.3
and 4.4) for better reconstruction.

To summarize, our contributions are the following:
• We present DMesh++, an enhanced version of

DMesh [37] that addresses its computational bottle-
necks with Minimum-Ball algorithm.

• To eliminate redundant faces and produce an efficient
mesh that adapts to local geometry in 2D reconstruction,
we introduce Reinforce-Ball algorithm.

• We propose additional mesh operations to use in the re-
construction pipeline. We also present an improved dif-
ferentiable renderer for 3D multi-view reconstruction.

• Utilizing these components, we reconstruct high-quality
meshes of complex shapes in both 2D and 3D, demon-
strating our approach’s effectiveness in 2D point cloud
reconstruction and 3D multi-view reconstruction tasks.

2. Related Work
While meshes offer an efficient and flexible representation
of shapes, they are mainly constrained by their connectiv-
ity issues, which limit their applicability in machine learn-
ing. To address these challenges, shape inference in ma-
chine learning has evolved through three stages. We briefly

introduce them below.

Using Alternative Differentiable Shape Representations.
Rather than handling mesh directly, some prior work ex-
tract mesh from alternative differentiable shape represen-
tations. Neural implicit representations, like signed or un-
signed distance fields [18, 20, 28, 30, 38–40, 43, 44], en-
code distance fields in neural networks, and use iso-surface
extraction methods [10, 13, 21] to generate the mesh. An-
other method encodes distance directly into spatial points
and applies differentiable iso-surface extraction [16, 19, 22,
24, 33, 34, 40]. While often more efficient, these methods
typically cannot handle open surfaces; though [19] does,
it cannot represent non-orientable geometries. Gaussian
Splatting [14] also encodes visual data as spatial “splats”
but lacks the geometric accuracy of implicit functions.

Inferring Meshes Differentiably. The main challenge in
differentiable mesh handling is the exponential growth of
possible vertex connections as vertex count increases. To
simplify this challenge, most prior works assume (almost)
fixed mesh connectivity [4, 15, 17, 27, 29, 47]. Recently,
data-driven approaches have aimed to overcome these limi-
tations by training generative models [5, 6, 11, 35, 36] that
predict vertex connectivity from point clouds. Specifically,
SpaceMesh [35] ensures combinatorial manifold mesh gen-
eration. However, these models still struggle with outliers
and are susceptible to self-intersections.

Designing A Differentiable Form of Mesh. Son et al. [37]
recently introduced DMesh, a differentiable mesh formu-
lation using a probabilistic approach. DMesh augments
each point with two continuous values, along with its po-
sition, and applies a “tessellation” function in Eq. (1) to
deterministically generate a mesh from a point set. This
method adapts to various geometric topologies and avoids
self-intersections. With DMesh, optimizing or inferring
only point-wise features is sufficient to generate the mesh,
simplifying the application of losses on points or faces.

However, DMesh’s tessellation function is slow due to
its reliance on Weighted Delaunay Triangulation (WDT),
which has a practical time complexity ofO(N) forN points
using the CGAL package [12]. For N = 100K in 3D, the
runtime can reach up to 800 milliseconds (Fig. 6), limiting
DMesh’s applicability for complex shapes requiring finer
detail. In this work, we eliminate WDT, proposing a more
efficient differentiable mesh formulation.

3. Formulation

In this section, we first provide the high-level formulation
for computing probability of a face to exist in the mesh.
Then, we introduce Minimum-Ball (Sec. 3.2), which is one
of our primary algorithms.
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Figure 2. Bounding balls of a face F (red) in 2D (left) and 3D
(right). The minimum bounding ball (BF ) is rendered in blue,
while the others are rendered in gray.

3.1. Preliminary
In this work, we refer to a (d−1)-simplex in d-dimensional
space as a “face” (e.g., a line segment for d = 2 or a triangle
for d = 3). DMesh [37] tessellates d-dimensional convex
space using faces, with the actual surface on “real” faces
and “imaginary” faces enclosing the “real” part to support
the convex space (Fig. 1).

In DMesh, each point is a (d + 2)-dimensional vec-
tor: the first d values denote position, while the remaining
two represent the Weighted Delaunay Triangulation (WDT)
weight (w) [1] and real value (ψ). The ψ ∈ [0, 1] of a
point indicates whether it lies on the shape, specifically if
Ψ(p) > 0.5, where Ψ(p) is ψ of a point p.

For a point set P, let Fwdt represent the faces in WDT
of P. DMesh then introduces a “tessellation” function to
determine if a face F exists on the mesh:

TDMesh(P, F ) = (F ∈ Fwdt) ∧ (min
p∈F

Ψ(p) > 0.5). (1)

DMesh++ introduces an alternative tessellation function
for faster processing. By removing the need for WDT, we
eliminate the WDT weight and represent each point as a
(d + 1)-dimensional vector, (x1, ..., xd, ψ). In place of
WDT, we implement a faster scheme called the Minimum-
Ball condition (Definition 3.1) for defining the tessellation
function. Letting Fmin represent the set of faces that meet
this condition, we define the tessellation function as

TDMesh++(P, F ) = (F ∈ Fmin) ∧ (min
p∈F

Ψ(p) > 0.5).

(2)
In our differentiable framework, we compute probability

of F to satisfy these two conditions: Λmin and Λreal, re-
spectively. Then, we compute the final probability of F to
exist on the mesh as Λ(F ) = Λmin(F ) × Λreal(F ). For
Λreal, we use differentiable min operator as DMesh. In the
next section, we explain how we define Λmin.

3.2. Minimum-Ball Algorithm
The mesh generated by DMesh’s tessellation function
in Eq. (1) is free from self-intersections, because Fwdt it-
self is free from it. However, the tessellation function is
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Figure 3. Minimum-Ball condition in 2D. In the left, 2D Delau-
nay Triangulation (DT) of 6 points is given. In middle and right
figure, we render BF for two faces (AB, DF ) in blue.

computationally expensive, as we need to compute WDT to
define Fwdt. In designing our Minimum-Ball, we desire to
remove this necessity for acceleration, while inheriting the
nice property about self-intersection. In the following, we
show that Minimum-Ball satisfies these requirements.

For a given set of points P ∈ Rd and a face F =
{p1, p2, ..., pd} ⊂ P, we define a bounding ball of F as
a d-dimensional ball that goes through every point of F .
Note that this bounding ball is not unique, but there exists a
unique minimum bounding ball, which has the minimum ra-
dius among every bounding ball. We name it asBF (Fig. 2).
Then, we define Fmin as a set of faces whose minimum
bounding ball does not contain any other point in P.

Definition 3.1. F ∈ Fmin if and only if there is no point in
P that lies (strictly) inside BF .

Note that we can ignore points in F , as they are located
on the boundary of BF . In Fig. 3, we render a 2D case,
where AB does not satisfy this definition because of F . In
contrast, DF satisfies this condition. Then, we can observe
that Fmin is a subset of faces in Delaunay Triangulation
(DT) of P, which we denote as Fdt.

Lemma 3.2. F ∈ Fmin ⇒ F ∈ Fdt.

Proof. By definition, a face F is in Fdt if there is a bound-
ing ball of F that does not contain any other point in P [7].
If the face F is in Fmin, its minimum bounding ball satisfies
this condition. Thus F is in Fdt.

Note that Fdt is also free from self-intersections as Fwdt,
and thus is Fmin. However, note that Fmin does not nec-
essarily tessellate the entire convex shape, as there could be
faces in Fdt that are not in Fmin (e.g. AB in Fig. 3).

Now, based on Definition 3.1, we can check if F is in
Fmin. Let us denote the center and radius of BF as Bc

F ∈
Rd andBr

F . We can compute these values in a differentiable
way (Appendix 7.2). Then, we can compute the maximum
signed distance between BF and P as follows:

d(BF ,P) = max
p∈P−F

Br
F − ||p−Bc

F || (3)

= Br
F − min

p∈P−F
||p−Bc

F ||. (4)
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(3D) Multi-View Images
(Diffuse, Depth)

Real Value Init. Position Optim.
(Minimum-Ball Algo.) Real Value Optim.

* Return if 
last epoch

Subdivision

Epoch
(2D) Point Cloud

Point Reduction
(Reinforce-Ball Algo.)

Figure 4. Reconstruction pipeline for 2D point cloud (up) and 3D multi-view images (down). Color represents per-point feature that is
optimized: position, real (ψ), and probability (ϕ).

As shown above, we can easily find d(BF ,P) by finding
the nearest point ofBc

F in P−F . Using this signed distance,
we can check if F is in Fmin as follows.

F ∈ Fmin ⇔ d(BF ,P) > 0. (5)

Then, it is straightforward to define Λmin with sigmoid
function as

Λmin(F ) = σ(d(BF ,P) · αmin), (6)

where αmin is a constant (Appendix 7.3).
With this formulation, we can evaluate Eq. (2) far more

efficiently than Eq. (1). Our method relies on a highly paral-
lelizable nearest neighbor search algorithm1, unlike the se-
quential WDT. While WDT has a practical time complexity
ofO(|P|), it is relatively slow. In contrast, our approach has
a time complexity of O(|F | · log |P|), where |F | is the num-
ber of query faces to evaluate. However, by parallelizing
the nearest neighbor search across query faces, especially
on GPU, this complexity effectively reduces to O(log |P|)2.
This allows our tessellation function to run up to 32 times
faster in 3D than DMesh [37] (Fig. 6). For optimization
tasks like reconstruction, we further accelerate by period-
ically caching nearest neighbors for each query face (Ap-
pendix 7.4). We provide formal algorithm in Appendix 7.1.

4. Reconstruction
In this section, we discuss how to reconstruct DMesh++ in
2D and 3D from point clouds or multi-view images, as re-
construction is an immediate application of DMesh++. We
introduce the reconstruction pipeline and novel algorithms

1We used implementation of PyTorch3D [32].
2We assume that |F | does not increase exponentially, which is a prac-

tical assumption as query faces are often determined by local proximity.

to enhance mesh quality, including our second main algo-
rithm, Reinforce-Ball. We also provide an overview of rele-
vant loss functions.

4.1. Pipeline Overview
The goal of reconstruction is to optimize point-wise fea-
tures, so that the resulting mesh aligns with the input obser-
vation – either a point cloud (2D) or multi-view images (3D)
as shown in Figure 4. For implementation details about each
step, please refer Appendix 8.

For 2D point cloud, we initialize points on a fixed tri-
angular grid and set the “real” values based on their over-
lap with the point cloud (Step 1). We then fix the “real”
values and optimize only the point positions (Step 2), us-
ing the Minimum-Ball algorithm to compute face existence
probabilities (Sec. 3.2). To achieve an efficient yet geomet-
rically accurate mesh, we use a novel Reinforce-Ball algo-
rithm (Sec. 4.2) in Step 3.

For multi-view images, we initialize the 3D points on
a tetrahedral grid and set the “real” values based on their
projections onto the images (Step 1). As before, we fix the
“real” values initially, optimizing only the point positions
based on Minimum-Ball (Step 2), then proceed to optimize
the “real” values again with fixed point positions (Step 3).
Then, if desired, we remove non-manifoldness at this step.
To achieve higher resolution, we apply a face subdivision
scheme between epochs (Step 4). We propose algorithms
for these mesh operations later (Sec. 4.3).

4.2. Reinforce-Ball Algorithm
Although the Minimum-Ball approach enables high-
resolution mesh handling, it often results in overly dense
meshes with redundant faces after reconstruction (Fig. 4).
This occurs because Minimum-Ball lacks mesh complex-
ity regularization. To address this in 2D cases, we propose
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Figure 5. Overview of Reinforce-Ball Algorithm. Based on per-
point existence probability (Φ(P)), we sample points for B num-
ber of batches (Pi). Here we use B = 4, and assume we are
reconstructing shape “A”. The points with ψ = 1 are rendered in
black, while those with ψ = 0 are rendered in blue. Then, we
identify existing faces in each batch (Fi) based on Eq. (2). With
Pi and Fi, we compute loss for each batch. Note that the case (1,
2) are better than (3, 4), because they reconstruct the shape better
(Li

recon). Also, the case (1) is better than (2), because it has less
number of points (Li

card). To minimize the expected loss (E[Lrl]),
we should maximize the probability to sample the case 1. We op-
timize Φ(P) to do that.

Reinforce-Ball algorithm, which reduces unnecessary faces
while preserving geometric detail.

Previously, DMesh [37]
used “weight regulariza-
tion” to simplify meshes
by increasing regularization
strength. However, this
approach struggled with adaptive resolution due to local
minima (Fig. 8). For example, when reconstructing the
left line segment in inset, only the end points (black) are
necessary, while the intermediate point (green) and colored
edges are redundant. The bottom configuration is ideal, so
if optimization starts from the top configuration, weight
regularization reduces the redundant point’s weight, as
shown in the middle configuration. However, this also
lowers the probabilities of redundant edges, increasing
reconstruction loss and thus restoring the redundant
point’s weight, preventing convergence to the optimal
configuration (Appendix 9.2). This issue arises from the
combinatorial nature of the problem.

To solve this problem, our Reinforce-Ball algorithm de-
fines per-point existence probability and optimize it using
stochastic optimization technique [42]. The overview of
this algorithm and its formal definition is given in Fig. 5
and Appendix 9.1, respectively.

To elaborate, for a point p ∈ P, let us denote the prob-
ability of it as ϕ(p) ∈ [0, 1], and concatenation of them as
Φ(P). Then, assuming we sample points independently, we
can sample a set of points P from Φ(P) and compute its
probability as follows:

P (P|Φ(P)) = Πp∈Pϕ(p) ·Πp∈P−P(1− ϕ(p)). (7)

Now, we sample points for B batches, and denote the
sample points for i-th batch as Pi. Based on Pi and tes-

sellation function in Eq. (2), we can find out which faces
exist for the i-th batch. Importantly, this process does not
require evaluating all possible global face combinations; in-
stead, it focuses only on local combinations, leveraging the
minimum-ball condition in the tessellation function. We
write these faces as Fi, and use them for computing re-
construction loss for i-th batch (Li

recon). We also compute
“cardinality” loss for i-th batch (Li

card), which is just the
number of sampled points (|Pi|). Then, we can compute
the loss Li

rl as

Li
rl = Li

recon + ϵcard · Li
card, (8)

where ϵcard is a small tunable hyperparameter to adjust the
weight of the cardinality loss. We report ablation on it
in Tab. 1 and Fig. 8. If we write the final loss for a set
of sampled points P as Lrl(P), we aim at minimizing the
expected loss:

EP∼Φ(P)Lrl(P) =
∑

P (P|Φ(P)) · Lrl(P). (9)

We can estimate the gradient of this expected loss using
log-derivative trick [25]. Then, we can update Φ(P) using
this gradient, and remove unnecessary points while preserv-
ing the original geometry (Figs. 1, 4 and 8). Notably, this
algorithm is particularly effective in 2D but less so in 3D,
as explained in Appendix 9.3.

4.3. Mesh Operations
Here we propose two mesh operations that we use in the 3D
reconstruction pipeline, which are easily applicable to 2D.

A
B

C

A
B C

D
Non-Manifoldness Removal
Mesh defined by our tessella-
tion function (Eq. (2)) is not
free from non-manifold edges
or vertices in combinatorial sense. We remove non-
manifold edges and vertices in Step 4. Non-manifold edges
(inset, left) are edges that are adjacent to more than 2
faces, and non-manifold vertices (inset, right) are vertices
whose adjacent faces do not form single fan. We detect
such cases, and remove faces that are adjacent to such non-
manifoldness until all of such cases are resolved, based on
their contribution to the reconstruction loss (e.g. number of
rendered pixels per face).

A
B

C

D

EF

Mesh Subdivision For mesh subdi-
vision, we add points with ψ = 1 at
the middle of edges that are adjacent
to currently existing faces. In the in-
set, points E,D,F are the newly in-
serted points. They form 4 sub-faces
with A,B,C, and they all satisfy Definition 3.1. Therefore,
we can guarantee that these sub-faces will exist at the start
of next epoch (Appendix 10).
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(a) 2D (b) 3D

Figure 6. Comparison of tessellation speed. Our method based
on minimum-ball algorithm computes face probabilities up to 16
times (2D) and 32 times (3D) faster than DMesh [37].

Figure 7. Quality of DMesh++ reconstructed from 2D point
cloud sampled from Egyptian painting. In left part, “imaginary”
part (gray) and “real” part (blue) are rendered together.

4.4. Loss Functions
For 2D point cloud recon-
struction, we use Chamfer
Distance (CD) as the recon-
struction loss. For 3D multi-
view reconstruction task, we
use rendering loss. Note that we need to formulate such
loss functions to consider face probabilities (Λ, Sec. 3.1) in
Step 1, 2, and 4. We follow formulations of DMesh [37]
– for CD, they propose expected CD, and for rendering,
they interpret face probability as its opacity in their own
differentiable renderer. However, their differentiable ren-
derer lacks visibility gradients, and has to rely on another
rendering process for them. To amend this issue, we im-
proved their renderer by implementing (face) anti-aliasing
in CUDA. As shown in the inset, we compute the intersect-
ing area between each pixel and triangle to compute the face
opacity at the pixel (Appendix 11). Finally, we use triangle
quality regularization [37] to improve the mesh quality.

5. Experiments
This section presents our experimental results. First, we
evaluate how Minimum-Ball accelerates the tessellation
function in 2D and 3D. Next, we demonstrate the Reinforce-
Ball algorithm’s effectiveness in producing efficient 2D
meshes with adaptive resolution. Finally, we showcase a

Method (hyperparameter) CD(×10−6)↓ # Verts. # Edges. Time (sec)

DMesh [37] (0) 1.97 2506 2245 30.39
DMesh (10−4) 2.68 666 693 153.10
DMesh (10−3) 12.48 456 488 152.37

DMesh++ (0) 1.82 2862 2793 11.33
DMesh++ (10−6) 1.86 1386 1394 278.88
DMesh++ (10−5) 2.77 149 152 200.05

Table 1. Quantitative ablation studies on Reinforce-Ball algo-
rithm. As we increase ϵcard (in parenthesis) for DMesh++, we
can significantly reduce the mesh complexity without losing geo-
metric details, while DMesh cannot do the same with λweight.

#E = 720 #E = 447 #E = 1339 #E = 151 

(a) DMesh (b) DMesh++

Figure 8. Qualitative ablation studies on Reinforce-Ball algo-
rithm (for letter ‘Q’). We render “imaginary” (black) part and
“real part” (red, blue) together.

practical application in 3D multi-view reconstruction, illus-
trating that our method is suitable for (differentiable) down-
stream tasks involving complex shapes. Our main algo-
rithms are implemented in PyTorch [31], with a differen-
tiable 3D renderer in CUDA [26]. All experiments were
conducted on a system with an AMD EPYC 7R32 CPU and
Nvidia A10 GPU.

5.1. Tessellation Speed
We compare the tessellation function speed between
DMesh [37] (Eq. (1)) and our DMesh++ (Eq. (2)). For
both 2D and 3D cases, we randomly generate N points
in a unit cube, find each point’s 10 nearest neighbors, and
use these proximities to form potential face combinations.
From these, we randomly select N faces as query faces for
the tessellation function. For each N (ranging from 1K to
200K to reflect practical scenarios), we ran five trials and
averaged the computational speeds.

In Fig. 6, we compare the computational costs of DMesh
and DMesh++. For DMesh, costs increase linearly with
point count in both 2D and 3D, due to the sequential WDT
algorithm. In contrast, DMesh++ shows sub-linear scal-
ing up to 50K points, benefiting from GPU parallelization
(Sec. 3.2). Beyond this, costs rise more sharply due to GPU
thread limitations. Nevertheless, DMesh++ handled 200K
points in 117ms for 2D and 168ms for 3D. This demon-
strates that the Minimum-Ball algorithm significantly accel-
erates tessellation, enabling efficient handling of complex
shapes (Figs. 1 and 7) that DMesh cannot handle. See Ap-
pendix 13.1 for more results on complex 2D drawings.
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(a) Ground Truth (b) DMesh++ (c) GShell (d) DMesh (e) FlexiCubes (f) DMTet (g) Remeshing

Figure 9. Qualitative comparison of 3D multi-view reconstruction results for open surface. Here we illustrate from back of an open
surface model (the front view is rendered at the left top of (a)). Colors represent inside and outside facing surfaces. DMesh++ captures
geometric details better than the other methods, while GShell [19] suffers from intricate structure of the shape, and DMesh [37] produces
false inner structures. The other approaches cannot represent open surfaces by nature.

Geometric Accuacy Mesh Quality Statistics

Method CD(×10−3)↓ F1↑ NC↑ ECD↓ EF1↑ AR↓ SI↓ NME↓ NMV↓ # Verts. # Faces. Time (sec)

Remeshing [29] 1.208 0.427 0.941 0.178 0.025 1.498 0.264 0 0 11895 23785 25
DMTet [33] 0.923 0.251 0.926 0.228 0.017 6.466 0.001 0 0 18145 36315 201
FlexiCubes [34] 1.032 0.355 0.925 0.154 0.025 2.065 0.014 0 0.003 12570 24745 88
GShell [19] 0.542 0.402 0.939 0.150 0.077 2.784 0.063 0 0.002 11920 23137 208
DMesh [37] 0.494 0.393 0.937 0.116 0.060 1.799 0 0.032 0.001 2396 4863 751

DMesh++(Ours) 0.127 0.460 0.964 0.133 0.062 1.603 0 0 0 10021 19300 204

Table 2. Quantitative comparison of 3D multi-view reconstruction results. We evaluate the reconstruction results with 5 metrics related
to geometric accuracy and 4 metrics related to mesh quality. For geometric accuracy, we use Chamfer Distance (CD), F1 score (F1),
Normal Consistency (NC), Edge Chamfer Distance (ECD), and Edge F1 score (EF1). For mesh quality, we use face Aspect Ratio (AR),
Self-Intersection face Ratio (SI), Non-Manifold Edge ratio (NME), and Non-Manifold Vertex ratio (NMV). Finally, we additionally report
several statistics: number of vertices and faces, and computation time. We highlighted the best results and the second best results for
the evaluation metrics. For every criteria, DMesh++ achieves the best, or at least comparable results.

5.2. Adaptive Resolution
We now demonstrate the impact of the Reinforce-Ball al-
gorithm on 2D point cloud reconstruction for a font dataset.
This experiment uses vector graphics of 26 uppercase letters
from four different font styles. For each letter, we sampled
a dense point cloud, which helps prevent “holes” that can
occur with insufficient point density (Appendix 12.1).

In Tab. 1, we present quantitative ablation studies on
the Reinforce-Ball algorithm. Increasing the tunable hy-
perparameter ϵcard (Sec. 4.2), which controls regulariza-
tion strength, leads to a rapid reduction in vertices and
edges. For instance, with ϵcard = 10−5, edges decrease by
nearly 94% with minimal impact on reconstruction quality.
DMesh [37] also offers a tunable parameter, λweight, for
weight regularization to reduce mesh complexity. However,
while edge reduction occurs, DMesh’s reconstruction qual-
ity degrades more quickly. At ϵcard = 10−5, our method
achieves a similar CD loss to DMesh with λweight = 10−4

but uses about 78% fewer edges. This advantage is also evi-
dent in Fig. 8, where our Reinforce-Ball algorithm removes
redundant edges effectively and adapts the mesh to local ge-

ometry. In contrast, DMesh’s edge removal disregards local
geometry, resulting in loss of detail. The main limitation
of Reinforce-Ball is its computational cost; while memory-
efficient, it converges slowly. Accelerating this algorithm
would be a valuable direction for future work.

5.3. 3D Multi-View Reconstruction

In this task, we reconstruct a mesh from multi-view im-
ages of a target object. We render (512 × 512) diffuse and
depth maps of the ground truth object from 64 viewpoints
(Fig. 4). We selected 10 closed and 10 open surfaces from
Thingi10K dataset [46] for this experiment. We chose ob-
jects with minimal self-occlusions, as we need dense obser-
vations of an object to fully reconstruct it (Appendix 12.2).
For comparison, we tested five other mesh reconstruction
algorithms: Remeshing [2], DMTet [33], FlexiCubes [34],
GShell [19], and DMesh [37], each with settings optimized
for best quality, including post-processing steps such as vis-
ibility tests to remove false internal structures. We also
aimed to produce meshes of similar complexity. See Ap-
pendix 12.2 for details.
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(a) DMesh++ (b) GShell (c) FlexiCubes (d) Remeshing

Figure 10. Self-intersection of the reconstructed mesh. The
self-intersected faces of the mesh are rendered in red.

In Tab. 2 and Figs. 9 and 10, we present quantitative
and qualitative comparisons of the reconstruction results.
For quantitative analysis, we assess geometrical accuracy
and mesh quality using five and four metrics, respectively,
and also report statistics on mesh complexity and computa-
tion time. The values represent averages across the entire
dataset; in Appendix 13.2, we separate results for closed
and open surfaces.

In Tab. 2, we observe that Remeshing, DMTet, and Flex-
iCubes have high CD errors, largely because they can-
not represent open surfaces (Fig. 9). This limitation also
explains why Remeshing and FlexiCubes are faster than
other methods. Although Remeshing achieved the best AR
and avoided non-manifoldness, it generated numerous self-
intersections, particularly on open surfaces (Fig. 10).

GShell improves CD loss by representing open sur-
faces through sub-surface extraction from closed templates.
However, it struggles with complex open surfaces, as esti-
mating the closed templates is challenging at the first place
(Fig. 9). It also suffers from self-intersections (Fig. 10) and
suboptimal AR. Compared to that, DMesh produced self-
intersection free mesh with better AR and CD, as it can rep-
resent open surfaces. Also, it produced much simpler mesh
than the other methods. However, it sometimes produced
false inner structure due to occlusion (Fig. 9), and was not
free from non-manifoldness. Its largest drawback was in
computational cost, limiting its utility for fine-grained re-
constructions.

DMesh++ addresses this issue with the Minimum-Ball
algorithm (Sec. 3.2) and nearest neighbor caching (Ap-
pendix 7.4). It achieves the best or comparable results
across all metrics, with computational costs similar to other
methods. Importantly, DMesh++ guarantees meshes free of
self-intersections (Fig. 10) and non-manifoldness, offering
geometrically accurate and high-quality reconstructions at
efficient computational costs.

Colors. For 3D multi-view reconstruction, we jointly op-
timize per-point colors to recover a textured object or small
scene. For a face F = {p1, p2, p3}, the color of a point
p on F is determined by interpolating the colors of p1, p2,

Figure 11. 3D scene reconstructions from multi-view images.
For the left scene, we render the front view at the top right corner.

and p3 using barycentric coordinates. In our experiments,
we used a similar setup as before, substituting diffuse maps
with high-resolution colored renderings (Appendix 12.2).
We reconstructed textured meshes from several objects and
small scenes in Objaverse [8] (Figs. 1 and 11), demonstrat-
ing our method’s ability to handle textured meshes and po-
tential for real-world image-based reconstruction. More in
Appendix 13.3.

6. Discussion
We presented DMesh++, a probabilistic approach for ef-
ficiently managing mesh connectivity. While primarily
demonstrated for reconstruction task on synthetic dataset,
DMesh++ can be applied across a range of applications.

First, we can extend the current reconstruction pipeline
to create large scenes from real-world images. Although
other representations, like NeRF [23] and Gaussian Splat-
ting [14], yield high-quality reconstruction results, they lack
precise geometric information. DMesh++, however, di-
rectly produces meshes that can be readily used in down-
stream applications, such as physics simulations. We also
envision DMesh++ being used to train generative models to
understand mesh connectivity. Since DMesh++ accommo-
dates diverse mesh topologies, generative models trained on
it could produce meshes with varied topologies. For exam-
ple, it could be applied to generate or infer complex struc-
tures in Biometrics like DNA (Fig. 1).

Limitations and Future Directions. DMesh++ has sev-
eral limitations to address for broader utility. First, although
DMesh++ offers a way to eliminate non-manifoldness in a
combinatorial sense, this does not ensure a favorable mesh
topology, such as watertight mesh. Removing faces to
resolve non-manifoldness often creates small holes in the
mesh surface, which are undesirable. Second, we only im-
plement reconstruction of DMesh++ from input images or
point clouds. Depending purely on inputs, issues like self-
occlusions in multi-view reconstruction can lead to floating
artifacts (Appendix 12.2). To handle this, future works can
introduce topological constraints to DMesh++ and utilize
data-driven priors to facilitate the reconstruction.
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DMesh++: An Efficient Differentiable Mesh for Complex Shapes

Supplementary Material

In this work, we presented DMesh++, a novel approach
to handle mesh in a differentiable manner.

As a core principle, we first introduced the Minimum-
Ball algorithm (Sec. 3.2). This algorithm allows us to in-
crease the mesh complexity in a computationally efficient
manner, enabling the handling of complex shapes. Specifi-
cally, we demonstrated that this algorithm has a time com-
plexity ofO(logN), whereN is the number of points. This
efficiency is achieved because the Minimum-Ball algorithm
considers only the local point configuration near a face to
determine the face’s existence. In contrast, DMesh [37]
evaluates the global point configuration, resulting in a time
complexity of O(N), which is significantly more costly as
N grows.

Under the Minimum-Ball condition, we select faces from
the Delaunay Triangulation (DT) that satisfy this criterion.
Among these, we identify faces whose vertices all have a
real value (ψ) of 1. These faces constitute the “real” part and
form the final mesh. The remaining faces in the DT, which
do not satisfy this criterion, are labeled as the “imaginary”
part and are excluded from the final mesh (Fig. 1).

Additionally, we presented the Reinforce-Ball algorithm
(Sec. 4.2) for 2D reconstruction tasks. This algorithm al-
lows us to decrease the mesh complexity, producing a mesh
that adapts to local geometry. Like the Minimum-Ball algo-
rithm, the Reinforce-Ball algorithm evaluates only the local
neighborhood of a face to determine its existence.

To summarize, these two algorithms enable us to achieve
both computational efficiency and mesh efficiency. In this
appendix, we provide detailed explanations and further dis-
cussions on various aspects of DMesh++.

7. Details about Minimum-Ball algorithm

7.1. Algorithm

Algorithm 1 Minimum-Ball
1: P,F← Set of points and query faces
2: αmin ← Coefficient for sigmoid function
3: Bc

F, B
r
F ← Compute-Minimum-Ball(P,F)

4: Pnearest
F ← Find-Nearest-Neighbor(Bc

F, P)
5: d(BF,P)← Br

F − ||Pnearest
F −Bc

F||
6: λmin(F)← σ(d(BF,P) · αmin)
7: return λmin(F)

We formally describe the Minimum-Ball algorithm
in Algorithm 1. Below, we provide a line-by-line expla-
nation of the algorithm:

• Line 1: We define the given set of points (specifically,
their positions) as P and the query faces as F.

• Line 2: We introduce αmin, the coefficient for the sig-
moid function used to map the signed distance to a prob-
ability. Details on determining αmin are provided in Ap-
pendix 7.3.

• Line 3: For each query face F ∈ F, we compute the min-
imum bounding ball (BF ) as described in Appendix 7.2.
We denote the entire set of bounding balls as BF, their
centers as Bc

F, and their radii as Br
F.

• Line 4: For each F ∈ F, we find the nearest neighbor of
Bc

F in P − F . However, this operation cannot be paral-
lelized across all query faces because the set P−F varies
for each face. To address this, we find (d + 1)-nearest
neighbors of Bc

F in P, where d is the spatial dimension.
This approach ensures correctness in two scenarios:
– If F ∈ Fmin, the bounding ball BF does not contain

any points from P within it, and the points on F are the
d-nearest neighbors of Bc

F . To find the nearest neigh-
bor in P−F , we need to consider (d+1)-nearest neigh-
bors.

– If F /∈ Fmin, only the single nearest neighbor of Bc
F is

relevant.
To safely handle both cases, we always search for (d+1)-
nearest neighbors and then select the first neighbor from
the list that does not belong to F .

• Line 5: We compute the signed distance d(BF,P) for all
query faces.

• Line 6: The signed distance is converted to a probabil-
ity using the sigmoid function, with αmin as the scaling
factor.

• Line 7: Finally, the algorithm returns the computed prob-
abilities for all faces.

7.2. Minimum-Ball computation

Let us define a faceF = {p1, p2, . . . , pd}, where pi ∈ P. To
determine the bounding balls of F , we first identify the set
of points that are equidistant from the vertices of F . Among
these, we select the point lying on the hyperplane containing
F as the center of the minimum bounding ball, denoted as
Bc

F .

When d = 2, the center simplifies to the midpoint of F :

Bc
F

∣∣
d=2

=
1

2
(p1 + p2). (10)
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Figure 12. Common signed distance for a 2D (left) and 3D
(right) face in (initial) regular grid. We compute the signed dis-
tance by subtracting the radius of the minimum bounding ball from
the length of the red line. The red dot represents the center of the
minimum bounding ball.

For d = 3, the computation is more complex 3:

Bc
F

∣∣
d=3

= p1+
||d2||2(d1 × d2)× d1 + ||d1||2(d2 × d1)× d2

2||d1 × d2||2
,

(11)
where d1 = p2 − p1 and d2 = p3 − p1.

Unlike the case where d = 2, for d = 3, we cannot
compute Bc

F if ||d1 × d2|| = 0. During computation, cases
where this value falls below a certain threshold are marked
and excluded from subsequent steps to avoid numerical in-
stability.

After determining Bc
F , we calculate the radius Br

F as the
distance between Bc

F and the points on F .

7.3. Sigmoid coefficient αmin

The sigmoid coefficient αmin plays a critical role in de-
termining the probability to which a signed distance d is
mapped. Even if a face F satisfies the Minimum-Ball con-
dition by a large margin (d(BF ,F) ≫ 0), indicating a high
existence probability for F , a small αmin value would re-
sult in the derived probability being only slightly greater
than 0.5. To minimize such mismatches, we set αmin based
on the density of the grid from which optimization begins.

As illustrated in Figure 4, the reconstruction process
starts from a fixed triangular (2D) or tetrahedral (3D) grid
(Fig. 13). At the initial state, every face in the grid satis-
fies the Minimum-Ball condition (Appendix 8.2). Notably,
every interior face in the grid shares a common signed dis-
tance dcommon > 0. Let us denote x as the edge length of
the grid, applicable for both 2D and 3D cases. Then, the
common signed distance can be computed as follows:

For d = 2:

dcommon =

√
3− 1

2
x. (12)

For d = 3:

dcommon =

√
34− 3

√
2

8
x. (13)

3Derived from the Geometry Junkyard: https://ics.uci.edu/
˜eppstein/junkyard/circumcenter.html

In Fig. 12, we provide an illustration of the reasoning be-
hind these results. By calculating these common signed dis-
tances, we use them to determine αmin. Specifically, dur-
ing the first epoch, we set αmin = 32/dcommon, ensuring
that the probability for every face in the grid is initialized to
σ(32) ≃ 1.0.

In subsequent epochs, αmin is adjusted to account for
the additional points introduced during subdivision. If α1

min

represents the value in the first epoch, the value for the i-th
epoch is given by:

αi
min =

α1
min

2i−1
. (14)

7.4. Nearest neighbor caching
In Secs. 3.2 and 5.1, we demonstrated how the Minimum-
Ball algorithm significantly accelerates tessellation. This
process can be further optimized by periodically caching the
K-nearest neighbors of each Bc

F in P and using the cached
neighbors for computing probabilities until the next cache
update. This optimization is feasible because the K-nearest
neighbors generally do not change significantly during the
optimization process.

Let us define the number of optimization steps as n0 and
the number of steps between cache updates as n1. At every
n1 steps, we refresh the query faces F based on the current
set of points P and recompute the centers of the minimum
bounding balls for the query faces (Bc

F). Then, we identify
the K-nearest neighbors of Bc

F in P. In practice, we com-
pute the (K + d)-nearest neighbors instead, as explained in
Appendix 7.1, to ensure robustness.

During the subsequent optimization steps, for a given
face F , we compute the distance from Bc

F to the cached
K-nearest neighbors in P and select the nearest neighbor
from the cache to compute the signed distance d(BF ,P).
This mechanism is described in detail in Algorithm 2 and
Appendix 8.3 in the context of point position optimization.
In our experiments for 3D multi-view reconstruction, we set
n0 = 2000, n1 = 50, and K = 10.

8. Details about Reconstruction Pipeline

In this section, we provide implementation details for each
step in the optimization pipeline (Fig. 4). Before delving
into these details, we revisit the reconstruction loss used in
our framework.

8.1. Reconstruction Loss (Lrecon)
Point Cloud When ground truth point clouds are pro-
vided, we utilize the expected Chamfer Distance (CD) pro-
posed by [37]. In this formulation, when sampling points
from our mesh, we assign an existence probability to each
sampled point, which matches the probability of the face

2

https://ics.uci.edu/~eppstein/junkyard/circumcenter.html
https://ics.uci.edu/~eppstein/junkyard/circumcenter.html


Figure 13. Grid structure to initialize real values in 2D (left)
and 3D (right). Every face in the grid structure satisfies Minimum-
Ball condition (Definition 3.1).

from which the point is sampled. The expected CD incor-
porates these probabilities, unlike the traditional Chamfer
Distance, which does not. For further details, refer to [37].

Multi-view Images For rendering probabilistic faces, we
interpret each face’s existence probability as its opacity, fol-
lowing [37]. We use a differentiable renderer of [37], but
enhance it with anti-aliasing implemented in CUDA (Ap-
pendix 11). This renderer is built upon the efficient Gaus-
sian Splatting renderer proposed by [14]. While it does not
perform exact depth ordering between faces, it efficiently
handles a large number of semi-transparent faces, making it
significantly faster than renderers that perform exact depth
ordering.

To compute the rendering loss, we render the mesh from
multiple viewpoints and compare the rendered images to
ground truth images using the L1 loss.

8.2. Step 1: Real Value Initialization
In this step, we initialize the point-wise real values (ψ). To
achieve this, we first organize the points in a regular grid,
ensuring that every face in the grid satisfies the Minimum-
Ball condition (Definition 3.1). This guarantees that the
faces observed in this step will also be observable in the
subsequent step, where the Minimum-Ball algorithm deter-
mines face existence. For d = 2, this condition is satisfied
by forming every triangle in the grid as an equilateral trian-
gle. For d = 3, we use a body-centered cubic lattice [3].
The grids are illustrated in Fig. 13.

With these fixed points and faces, we determine which
faces to include in the final mesh by minimizing the recon-
struction loss Lrecon. Specifically, for each face F in the
grid, we assign an optimizable variable Ξ(F ) ∈ [0, 1], rep-
resenting the face’s existence probability. We then optimize
Ξ(F ) to minimize Lrecon. To reduce the number of redun-
dant faces, we add a small regularization term Lreal:

Lreal =
1

|F|
∑
F∈F

Ξ(F ), (15)

Algorithm 2 Position Optimization

1: P,Ψ← Set of points and their real values
2: αmin ← Coefficient for sigmoid function
3: n0 ← Number of optimization steps
4: n1 ← Number of refresh steps for query faces
5: K ← Number of nearest neighbors to store in cache
6: i← 0
7: while i < n0 do
8: if i mod n1 = 0 then
9: F← Update-Query-Faces(P,Ψ)

10: Bc
F, B

r
F ← Compute-Minimum-Ball(P,F)

11: C← Find-KNN(Bc
F,P, K)

12: end if
13: Bc

F, B
r
F ← Compute-Minimum-Ball(P,F)

14: Pnearest
F ← Find-NN-CACHE(Bc

F,C)
15: d(BF,P)← Br

F − ||Pnearest
F −Bc

F||
16: λmin(F)← σ(d(BF,P) · αmin)
17: λ(F)← λmin(F)
18: L← Compute-Loss(P,F, λ(F))
19: Update P to minimize L
20: i← i+ 1
21: end while

where F is the set of faces in the grid. The total loss opti-
mized in this step is:

L = Lrecon + αreal · Lreal. (16)

We set αreal = 10−4.
After optimization, we collect faces with probabilities

larger than 0.01 to ensure that as many faces as possible are
available for the next optimization step, thereby reducing
the risk of holes in the surface. We then gather the points on
the remaining faces, setting their real values (ψ) to 1, while
setting the real values of other points to 0.

For 2D point cloud reconstruction, this process can be
accelerated by ignoring faces that do not overlap signifi-
cantly with the given point cloud. However, this approach
is not applicable to 3D multi-view reconstruction.

8.3. Step 2: Position Optimization
In this step, we fix the point-wise real values (ψ) and opti-
mize only the point positions. For clarity, we formally de-
scribe the process in Algorithm 2, and explain the algorithm
line by line below:
• Lines 1-2: For the given set of points, we denote their

positions as P and their real values as Ψ.
• Line 3: We define the total number of optimization steps

as n0.
• Line 4: We define the number of optimization steps re-

quired to refresh query faces and their nearest neighbor
cache as n1. Since point positions are optimized, the
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point configuration evolves during optimization, poten-
tially leading to the emergence of new faces that were
previously unobservable. To account for these changes,
we refresh the query faces periodically.

• Line 5: We denote the number of nearest neighbors to
store in the nearest neighbor cache for the query faces as
K.

• Lines 6-7: The optimization process runs for n0 steps.
• Lines 8-12: At every n1 step, we update the query faces

based on the current point configuration.
In the Update-Query-Faces function, which uses
point positions and their real values, we:
– Extract points with a real value of 1.
– For each extracted point, find its 10-nearest neighbors

that also have a real value of 1, since any face contain-
ing a point with a real value of 0 is considered non-
existent.

– Perform Delaunay Triangulation (DT) for the entire
point set and collect faces in DT where all points have
a real value of 1. This ensures the inclusion of as many
faces as possible during optimization, helping to elim-
inate potential holes later.

For the updated query faces, we compute the centers of
their minimum bounding balls. Subsequently, we identify
the K-nearest neighbors of these centers in P and store
this information in the nearest neighbor cache C.

• Lines 13-16: Using the current point configuration, we
compute the minimum bounding balls (BF) for the query
faces. For each bounding ball center, we find the near-
est neighbor in the nearest neighbor cache C by calculat-
ing the distances to points in C and selecting the closest
one. We then compute the signed distance d(BF,P) for
the query faces and use it to determine the probability
λmin(F).

• Line 17: Since the query faces consist only of points with
a real value of 1, we set the final face probability λ(F) to
be the same as λmin(F) (Sec. 3.1).

• Line 18: Based on the point positions, query faces, and
their existence probabilities, we compute the loss L to
minimize. In this step, L consists of the reconstruction
lossLrecon and the triangle quality lossLqual (for d = 3).
We calculate Lqual as described in [37]. The total loss L
is defined as:

L = Lrecon + αqual · Lqual, (17)

where we set αqual = 10−3.
• Lines 19-20: Finally, we update the point positions P to

minimize L and iterate the process.

8.4. Step 3: Point Reduction
In this step, we remove redundant points and faces using
the Reinforce-Ball algorithm (Sec. 4.2) for d = 2. For the
formal definition of the algorithm, refer to Appendix 9.1.

8.5. Step 4: Real Value Optimization
In this step, we re-optimize the point-wise real values while
keeping the point positions fixed. From the current point
configuration, we identify all faces in the Delaunay Tri-
angulation (DT) that satisfy the Minimum-Ball condition.
Note that any face satisfying this condition must exist in the
DT (Lemma 3.2). Thus, we first compute the DT of the
points and then verify whether each face in the DT satisfies
the Minimum-Ball condition.

Next, we follow a similar optimization process to Step
1 (Appendix 8.2). Specifically, we optimize the face-wise
probabilities using the same loss function and derive the
point-wise real values from the optimized face-wise prob-
abilities. In case of 3D multi-view reconstruction, we also
conduct visibility test and remove faces that are not visible.
After optimization, we optionally remove non-manifold
structures, as described in Sec. 4.3, if desired by the user.
If this is the last epoch, we return the post-processed mesh.

It is important to note that there may be faces that satisfy
the tessellation function in Sec. 3.1 but are not included in
the final mesh. This occurs because face-wise probabilities
are optimized at this step, and non-manifold structures are
removed based on face-wise existence.

8.6. Step 5: Subdivision
When d = 3, we subdivide the mesh by inserting additional
points on the current faces (Sec. 4.3, Appendix 10). How-
ever, for the 2D point cloud reconstruction task, we found
that starting with a very dense grid eliminates the need for
additional subdivisions.

9. Details about Reinforce-Ball algorithm
In the Reinforce-Ball algorithm, we select possible face
combinations within the local neighborhood and then opti-
mize the per-point probabilities (ϕ) to minimize the number
of points while preserving geometric details in 2D. Impor-
tantly, face combinations are determined locally, based on
the Minimum-Ball condition, rather than globally. This lo-
cal approach is the key to effectively removing redundant
points and faces.

9.1. Algorithm
In Algorithm 3, we formally describe the Reinforce-Ball al-
gorithm in detail:
• Line 1: In the Reinforce-Ball algorithm, we optimize per-

point probabilities for n0 epochs, with each epoch con-
sisting of n1 optimization steps. In our experiments, we
set n0 = 10 and n1 = 2000.

• Line 2: We define the number of batches used during
optimization as B. Increasing B improves the stability
of the gradient computation but also increases computa-
tional cost. In our experiments, we set B = 1024.
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Algorithm 3 Reinforce-Ball
1: n0, n1 ← Number of epochs and optimization steps
2: B ← Number of batch samples
3: Φ← Per-point probabilities, initialized to 0.99
4: i← 0
5: while i < n0 do
6: F← Update-Query-Faces(P,Ψ)
7: BF ← Compute-Minimum-Ball(P,F)
8: j ← 0
9: while j < n1 do

10: (k = 1, ..., B)
11: Pk ← Sample-Points(P,Φ)
12: Fk ← Get-Exist-Faces(Pk,F, BF)
13: Lk

rl ← Compute-Loss(P,Pk,Fk)

14:
∂E[Lrl]

∂Φ ← Estimate-Gradient(Φ,Pk, Lk
rl)

15: Φ← Update-Gradient(Φ, ∂E[Lrl]
∂Φ )

16: end while
17: P,Ψ← Get-Remaining-Points(P,Ψ,Φ)
18: end while

• Line 3: Initialize the per-point probability of every point
to 0.99, as all points are assumed to exist with high proba-
bility before optimization. The probabilities are not set to
1.0 to avoid every sampled batch (Line 11) including all
points, which would prevent optimization from progress-
ing.

• Lines 4-5: Perform multiple epochs of optimization.
• Line 6: Gather the possibly existing faces (F) based on

the current point configuration and their real values. This
function is the same as the one used in the Point Opti-
mization step (Appendix 8.3).

• Line 7: Compute the minimum bounding ball BF for the
gathered query faces.

• Lines 8-9: Perform the optimization steps within the cur-
rent epoch.

• Line 10: Consider B batches, each containing a different
point configuration based on the sampled points.

• Line 11: For each batch, sample points from P based
on their probabilities Φ. Each point is sampled indepen-
dently, and the probability of sampling a specific batch is
computed as shown in Eq. (7). The sampled points in the
k-th batch are denoted as Pk.

• Line 12: For each batch, determine the existing faces in F
based on the sampled points. Specifically, a face F exists
if all its points are included in the sampled points and its
BF satisfies the Minimum-Ball condition. The existing
faces in the k-th batch are denoted as Fk.

• Line 13: For each batch, compute the loss as the sum of
the reconstruction loss (Lrecon) and the cardinality loss
(Lcard), as discussed in Sec. 4.2.

• Line 14: Estimate the gradient of the expected loss
(E[Lrl]) with respect to the per-point probabilities Φ us-
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Figure 14. Local minima of weight regularization in a render-
ing setting. (1) The ground truth geometry is rendered in gray
dotted line. There are 3 points (A, B, C), where only the end
points (A, B) are necessary for fully representing the underlying
shape. Every point has weight 1.0, which is written to the next of
each point. In this case, faces AC and BC exist with probability
1.0, which corresponds to their opacity. In this case, for a ray that
goes through this mesh, the accumulated opacity (A.O.) becomes
1.0, and the reconstruction loss is 0. (2) When weight regulariza-
tion reduces the weight of (redundant) C to 0.8, the probability
of faces AC and BC becomes 0.8, and that of AB becomes 0.2.
However, in this case, the accumulated opacity of the same ray
becomes 0.84, which results in non-zero reconstruction loss. (3)
Therefore, with a small weight regularization, we cannot remove
C to get this optimal mesh, which contains only AB, and attains 0
reconstruction loss.

ing the log-derivative trick [25]:

∇ΦEP∼Φ[Lrl] ≈
1

B

B∑
i=1

∇Φ logP (Pi|Φ) · Li
rl. (18)

To reduce the variance of the gradient, we normalize Lrl

across the batch before the computation [9].
• Line 15: Update Φ using the estimated gradients.
• Line 17: After completing an epoch, discard points

whose probability is below a specified threshold. In our
experiments, we set the threshold to 0.5. The remaining
points are used for the next epoch. As points are removed,
the query faces updated in Line 6 for the next epoch will
span a larger area than in the previous epoch.

9.2. Local minima of Weight Regularization

As briefly discussed in Sec. 4.2, the previous approach [37],
which relies on “weight regularization,” cannot achieve
adaptive resolution by removing redundant faces alone.
Here, we explain the reasons in detail, assuming that per-
point probabilities are optimized, and the Minimum-Ball
condition is used for computing face probabilities.

In Fig. 14, we provide an example in a rendering sce-
nario. A camera is placed on the left, and three different
probabilistic meshes are shown on the right.
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In case (1), there are three points: A, B, and C. By con-
necting points A and B, the ground truth shape can be per-
fectly reconstructed, making point C redundant. Assume
the optimization starts from this state, where all points have
an existence probability of 1.0. According to the Minimum-
Ball condition, the probabilities of faces AC and BC will
also be 1.0. In this scenario, if a ray from the camera in-
tersects the mesh, the accumulated opacity will be 1.0, rep-
resenting a fully opaque surface. Consequently, the recon-
struction loss will be 0.0, as the fully opaque faces perfectly
match the ground truth.

In case (3), the optimal configuration is rendered, where
the redundant point C is removed. The probability of face
AB becomes 1.0, making it fully opaque. Again, the recon-
struction loss is 0.0.

In case (2), an intermediate state between cases (1) and
(3) is rendered. Assume that the probability of point C is re-
duced to 0.8 due to regularization. Consequently, the proba-
bilities of facesAC andBC are also reduced to 0.8 because
one of their endpoints, C, has a probability of 0.8. Simulta-
neously, the probability of face AB increases from 0 to 0.2,
as the probability of point C, which lies inside the minimum
bounding ball of the face, is 0.8.

Now, consider a camera ray passing through AB and
BC sequentially (the order does not matter due to their tight
overlap). Using alpha blending, the accumulated opacity is
computed as:

Accumulated Opacity: 0.2+(1.0−0.2) ·0.8 = 0.84. (19)

This calculation shows that the accumulated opacity is re-
duced to 0.84.

The key issue arises from the dependency between the
probabilities of AB, AC, and BC. In the above formula-
tion, the term (1.0−0.2) ·0.8 represents the probability that
the ray misses AB and hits BC. If the probabilities of AB
and BC were independent, this formulation would be cor-
rect. However, they are dependent: in fact, the probability
of BC equals 1.0 − AB because both depend on the prob-
ability of C. Thus, the actual accumulated opacity should
be:

0.2 + (1.0− 0.2) · 1.0 = 1.0. (20)

However, the alpha blending technique used here does not
account for such dependencies, leading to a reduction in ac-
cumulated opacity. This reduction artificially increases the
reconstruction loss. To minimize the loss, the optimizer in-
creases the probability of C again, preventing convergence
to the optimal case (3).

This dependency issue creates a local minimum that the
previous formulation cannot overcome. This is why we pro-
posed the Reinforce-Ball algorithm in Sec. 4.2.

?

(a) 2D (b) 3D
Figure 15. Reinforce-Ball algorithm in (a) 2D and (b) 3D. (a)
In 2D, we can detect redundant point easily, which is rendered in
green. (b) In 3D, we cannot detect such points readily, because we
cannot predict how connectivity would change when we remove
them.

9.3. Reinforce-Ball in 3D
Despite the success of the Reinforce-Ball algorithm in
2D, we found it difficult to extend this approach to 3D.
In Fig. 15, we visualize the reasoning behind this challenge.
When d = 2, redundant points usually lie within the inner
part of a face with small curvature (i.e., a straight line seg-
ment). In this case, our algorithm can easily identify the
redundant points, as removing such a point simply extends
the face into a longer straight line segment.

However, when d = 3, it is not as straightforward to
identify redundant faces. For example, in the right illustra-
tion of Fig. 15, the middle green point appears to be redun-
dant, as it lies at the center of the points forming a planar
mesh. However, we cannot predict how the connectivity
will change when this point is removed. Due to this limi-
tation, we might mistakenly predict that removing the point
would create a hole. This occurs because the number of pos-
sible connections in 3D is significantly larger than in 2D. As
a result, the Reinforce-Ball algorithm is less effective at re-
moving redundant points and faces in 3D compared to the
2D case.

10. Details about Mesh Subdivision

In Sec. 4.3, we briefly discussed how the current mesh is
subdivided by inserting additional points onto the existing
faces. When additional points are added to these faces, we
set the real value (ψ) of the new points to 1, ensuring that
the newly created faces exist in the mesh at the start of the
next epoch.

However, it is also possible to insert additional points
into faces that should not exist in the next epoch, effec-
tively removing such faces at the start of the next epoch.
For example, during the real value optimization step in
the pipeline (Fig. 4, Appendix 8.5), face-wise probabilities
are optimized. After optimization, we may observe faces
with a probability of 0.0, while all their points have a real
value of 1.0, creating a contradiction. This situation could
arise due to ambiguities in the mesh definition, as illustrated
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Figure 16. Point insertion for removing undesirable face. (Left)
To reconstruct the ground truth shape, we need to set the real value
(ψ) of points A-E to 1. The point rendered with dotted line has real
value of 0. Then, we observe unnecessary faceBD exists. (Right)
To remove this face, we insert additional point that carries 0 real
value near the unnecessary face.

in Fig. 16.
To eliminate these undesirable faces, additional points

with a real value of 0 are inserted at their circumcenters.
Consequently, after subdivision, several holes may appear
on the surface because these additional points might also be
inserted into faces that should exist. However, most of these
holes are resolved during subsequent optimization steps.

11. Details about Differentiable Renderer:
Anti-Aliasing

Here we provide implementation details about the (face)
anti-aliasing method introduced in Sec. 4.4. Specifically, for
each (triangular) face-pixel pair (F, P ), we project F onto
the image space and compute the overlapping area A(F, P )
between the projected triangle and the pixel (Fig. 17, blue
area). Denoting the total area of the pixel as A(P ), the ra-
tio of the overlapping area in the given pixel, ρ(F, P ), is
computed as:

ρ(F, P ) =
A(F, P )

A(P )
. (21)

We use ρ(F, P ) to determine the opacity of the face F
at the pixel P . If the opacity of F is α(F ), we compute the
face opacity at pixel P , α(F, P ), as:

α(F, P ) = α(F ) · ρ(F, P ) ≤ α(F ). (22)

Thus, the opacity of F at P is proportional to the over-
lapping area between the triangle and the pixel.

In Fig. 17, we illustrate the process of computing the
overlapping area A(F, P ). The vertices of F are projected
onto the image plane and visited in counterclockwise order
(e.g., A - B - C - A in the illustration). We then find the
intersection points between the triangle edges and the pixel
boundaries. These intersection points form the vertices of
the (convex) overlapping polygon.

For example, vertices (a) and (b) are found by calculat-
ing the intersections of AB with the pixel boundaries. The

A

B

C

a

b

c

d
e

f

g

Figure 17. Computing the overlapping area between a triangle
and a pixel for anti-aliasing.

vertices of the overlapping polygon are stored in counter-
clockwise order, and the polygon is subdivided into a set
of sub-triangles, as shown by the dotted red lines in the vi-
sualization. The total area of the overlapping polygon is
obtained by summing the areas of the sub-triangles.

To accelerate this process, we implemented the algo-
rithm in CUDA.

12. Experimental Details

In this section, we provide details about experimental set-
tings of the results in Sec. 5.

12.1. 2D Point Cloud Reconstruction
12.1.1. Font
Dataset For the font reconstruction experiments
in Sec. 5.2, we used four publicly available font styles:
Pacifico, Permanent-Marker, Playfair-Display, and Roboto.
These fonts were downloaded from the Google Fonts 4

service.

Sampling Density As discussed in Sec. 5.2, we extracted
26 uppercase letters from each of these font styles and sam-
pled dense point clouds as input (Fig. 4). To determine
an appropriate point cloud density for good reconstruction
quality, we considered the density of the initial triangular
grid (Appendix 8.2, Fig. 13).

For a given character, we randomly sampled 1000 points
per Bézier curve in the character and merged the samples.
The resulting point cloud was normalized so that all points
resided within a unit square [−1, 1]2. The initial triangu-
lar grid covered this domain. Let the edge length of the
triangular grid be x. Next, we divided the domain into a
rectangular grid with an edge length approximately x/2,
giving the rectangular grid a slightly higher resolution than
the triangular grid.

4https://fonts.google.com/
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For each cell in the rectangular grid, if multiple sam-
ple points were present within the cell, we randomly se-
lected one point to retain. This rectangular grid acted as a
filter to scale down the point cloud while preserving suffi-
cient density for shape reconstruction. Since the rectangular
grid had a higher resolution than the triangular grid, this ap-
proach provided a point cloud dense enough to reconstruct
the shapes effectively.

To summarize, the density of the sample point cloud de-
pends on the edge length of the initial triangular grid. For
font reconstruction, we set the edge length to 0.005.

However, sparse regions lacking sample points occasion-
ally resulted in holes in the reconstructed meshes. To ad-
dress this issue, we can either sample more points (e.g.,
more than 1000 points per Bézier curve) or use a finer rect-
angular grid. Nevertheless, we found that our current con-
figuration generally performed well.

DMesh Settings For comparison, we used DMesh [37].
The following experimental settings were used for font re-
construction:
• Step 1: Real Value Initialization

– Number of optimization steps: 100
– Learning rate: 0.3

• Step 2: Point Position Optimization
– Number of optimization steps: 3000
– Warm-up steps: 500 5

– Learning rate: 0.001

DMesh++ Settings In general, the experimental settings
of DMesh++ are the same as those of DMesh. The only
difference is that DMesh++ optimizes point positions for
500 steps in Step 2, the same as the number of warm-up
steps in DMesh. After this, DMesh++ proceeds to Step 3,
described in Appendix 9.1. For this step, the learning rate
for point probabilities was set to 0.01.

12.1.2. Complex Drawings
Dataset We used six vector graphic images representing
complex drawings (Figs. 1, 11 and 20 to 23). These images
were downloaded from Adobe Stock 6.

Sampling Density For complex drawings, we required
more sample points compared to fonts due to their increased
complexity. Therefore, we set the edge length of the initial
triangular grid to 0.001, which is significantly smaller than
the 0.005 used in the font experiments.

For these inputs, we could not use DMesh for reconstruc-
tion due to memory limitations. For DMesh++, we did not

5Number of optimization steps before starting weight regularization
(Sec. 5.2). If weight regularization is not used, optimization ends after
these warm-up steps.

6https://stock.adobe.com/

Figure 18. False floaters in 3D reconstruction result for a com-
plex vase. Image captured from front (left), and top (right) of the
reconstructed mesh. When there are many self-occlusions that hin-
der dense observation, false floaters are created near the surface.

apply the Reinforce-Ball algorithm for adaptive resolution
due to its excessive computational cost. All other settings
remained the same as those used in the font experiments.

12.2. 3D Multi-View Reconstruction
12.2.1. Thingi10K
Dataset As mentioned in Sec. 5.3, we selected 10
closed surfaces and 10 open surfaces from the Thingi10K
dataset [46] to evaluate the 3D multi-view reconstruction
quality. Specifically, we used the following models (de-
noted by their file IDs):

• Closed surfaces: 47926, 68380, 75147, 80650, 98576,
101582, 135730, 274379, 331105, and 372055.

• Open surfaces: 40009, 41909, 73058, 82541, 85538,
131487, 75846, 76278, 73421, and 106619.

We selected these models because they exhibit mini-
mal self-occlusions, allowing for dense observations from
multi-view images. In contrast, models with significant
self-occlusions, such as the vase shown in Fig. 18, do not
meet this criterion. The vase’s rugged surface structure
leads to numerous self-occlusions, and its inner surface is
not well-observed from most input images. Consequently,
our algorithm struggles to effectively remove false inner
parts in such cases.

It is worth noting that the primary focus of our paper is
to demonstrate the effectiveness of DMesh++ as an efficient
shape representation, rather than to propose a perfect recon-
struction algorithm. Consequently, we assume perfect ob-
servations for reconstructing the given shapes and exclude
models with significant self-occlusions from our dataset.
We believe this limitation could be addressed by introduc-
ing certain topological assumptions, as discussed in Sec. 6.

For all selected models, we normalized their size to fit
within a unit cube [−1, 1]3 and captured diffuse and depth
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images with a resolution of 512× 512 pixels from 64 view-
points (Fig. 4).

Next, we describe the experimental settings for each
method used for comparison in Sec. 5.3.

Remeshing Settings For Remeshing [29], we used the
following experimental settings:
• Image Batch Size: 8
• Number of Optimization Steps: 1000
• Learning Rate: 0.1
• Edge Length Limits: [0.02, 0.15]

The ”Edge Length Limits” were adjusted to produce
meshes with a similar number of vertices and faces to other
methods for a fair comparison.

DMTet Settings For DMTet [33], we used the following
experimental settings:
• Image Batch Size: 8
• Number of Optimization Steps: 5000
• Learning Rate: 0.001
• Grid Resolution: 128

The SDF was initialized to a sphere, as in the original
implementation, before starting optimization.

FlexiCubes Settings For FlexiCubes [34], we used the
following experimental settings:
• Image Batch Size: 8
• Number of Optimization Steps: 2000
• Number of Warm-up Steps: 1500
• Learning Rate: 0.01
• Grid Resolution: 80
• Triangle Aspect Ratio Loss Weight: 0.01

The SDF was initialized randomly, following the origi-
nal implementation. To improve the quality of the output
mesh, we adopted a triangle aspect ratio loss, designed to
minimize the average aspect ratio of triangles in the mesh.
The mesh was first optimized for 1500 steps as a warm-up
without the triangle aspect ratio loss, followed by 500 steps
with the additional loss.

Additionally, we observed that the output mesh often
included false internal structures, which significantly de-
graded the Chamfer Distance (CD) compared to the ground
truth mesh. To mitigate this, we performed a visibility test
on the output mesh to remove these false internal structures
as much as possible.

GShell Settings For GShell [19], we used the following
experimental settings:
• Image Batch Size: 8
• Number of Optimization Steps: 5000
• Number of Warm-up Steps: 4500
• Learning Rate: 0.01

Figure 19. Input depth maps (left) and color maps (right) for
3D multi-view reconstruction. These images were used to recon-
struct the flowers model in Fig. 1.

• Grid Resolution: 80
• Triangle Aspect Ratio Loss Weight: 0.0001

To enhance the quality of the output mesh, we employed
the same additional measures as FlexiCubes. We found that
longer optimization steps were required for GShell com-
pared to FlexiCubes to effectively handle open surfaces.

DMesh Settings For DMesh [37], we used the experi-
mental settings from the original implementation. The only
modification was in the resolution of the input images.

DMesh++ Settings For DMesh++, we used the following
experimental settings:
• Initial Grid Edge Length: 0.05
• Learning Rate (Real Value, ψ): 0.01
• Learning Rate (Position): 0.001
• Number of Epochs: 2

– Image Res. / Batch Size at Epoch 1: (256, 256), 1
– Image Res. / Batch Size at Epoch 2: (512, 512), 1

• Number of Optimization Steps
– Step 1 (Real Value Initialization): 1000
– Step 2 (Point Position Optimization): 2000
– Step 3 (Real Value Optimization): 1000
In the first epoch, we used lower-resolution images as

part of a coarse-to-fine approach.

12.2.2. Objaverse
Dataset We used textured meshes downloaded from Ob-
javerse [8] to test our reconstruction algorithm. We chose
them based on the same conditions as Thingi10K experi-
ments. As these meshes have textures, we replaced the in-
put diffuse maps with color maps, as shown in Fig. 19. We
provide the results in Appendix 13.3.

DMesh++ Settings To reconstruct the meshes more faith-
fully, we used higher resolution images for these experi-
ments. Also, we optimized the mesh for larger number of
epochs, as shown below.
• Initial Grid Edge Length: 0.05
• Learning rate (real value, ψ): 0.01
• Learning rate (position): 0.001
• Number of epochs: 4

– Image Res. / Batch Size at Epoch 1: (256, 256), 1
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Geometric Accuacy Mesh Quality Statistics

Method CD(×10−3)↓ F1↑ NC↑ ECD↓ EF1↑ AR↓ SI↓ NME↓ NMV↓ # Verts. # Faces. Time (sec)

Remeshing [29] 0.126 0.330 0.950 0.114 0.123 1.429 0.001 0 0 13527 27049 25
DMTet [33] 0.172 0.242 0.935 0.309 0.019 6.015 0 0 0 19410 38816 201
FlexiCubes [34] 0.385 0.348 0.938 0.227 0.026 2.049 0.001 0 0.003 13637 26874 89
GShell [19] 0.145 0.339 0.942 0.246 0.031 2.662 0.013 0 0.002 14502 28624 209
DMesh [37] 0.241 0.292 0.942 0.141 0.059 1.803 0 0.001 0 2675 5348 765

DMesh++(Ours) 0.141 0.345 0.965 0.170 0.073 1.604 0 0 0 13170 25856 214

Table 3. Quantitative comparison of 3D multi-view reconstruction results for closed surfaces. We follow the notation of Tab. 2.

Geometric Accuacy Mesh Quality Statistics

Method CD(×10−3)↓ F1↑ NC↑ ECD↓ EF1↑ AR↓ SI↓ NME↓ NMV↓ # Verts. # Faces. Time (sec)

Remeshing [29] 2.290 0.524 0.933 0.149 0.028 1.568 0.527 0 0 10263 20521 25
DMTet [33] 1.887 0.262 0.915 0.266 0.003 7.045 0.001 0 0 16517 33098 200
FlexiCubes [34] 1.752 0.362 0.911 0.291 0.013 2.083 0.030 0 0.004 11384 22378 87
GShell [19] 0.940 0.467 0.936 0.089 0.028 2.906 0.112 0 0.002 9338 17651 207
DMesh [37] 0.775 0.505 0.931 0.089 0.124 1.794 0 0.066 0.001 2086 4324 736

DMesh++(Ours) 0.105 0.575 0.964 0.026 0.169 1.603 0 0 0 6873 12744 194

Table 4. Quantitative comparison of 3D multi-view reconstruction results for open surfaces. We follow the notation of Tab. 2.

– Image Res. / Batch Size at Epoch 2: (512, 512), 1
– Image Res. / Batch Size at Epoch 3: (1024, 1024), 1
– Image Res. / Batch Size at Epoch 4: (1024, 1024), 1

• Number of optimization steps
– Step 1 (Real value initialization): 1000
– Step 2 (Point Position optimization): 2000
– Step 3 (Real value optimization): 1000

13. Additional Experimental Results

13.1. 2D Complex Drawing Reconstruction
In Figs. 20 to 23, we present additional reconstruction re-
sults for complex drawings in 2D. For each result, the final
mesh is rendered at the top. At the bottom, we render the
“real” part in blue and the “imaginary” part in gray.

The number of edges and computational time for each
reconstruction are provided in the figure captions. It is im-
portant to note that the computational cost increases approx-
imately linearly with the number of edges.

We found that the majority of the computational cost
originates from computing the expected Chamfer Distance
(CD) loss for reconstruction, rather than from evaluating
face probabilities. Thus, we believe that optimizing the al-
gorithm for computing the expected CD loss could signifi-
cantly accelerate this process.

13.2. 3D Multi-View Reconstruction for Thingi10k
In Tabs. 3 and 4, we present quantitative comparisons of
multi-view reconstruction results for closed and open sur-
faces, respectively. Notably, DMesh++ outperforms other

methods by a large margin for open surfaces.
For closed surfaces, while the Remeshing method [29]

achieved the overall best results, the performance of
DMesh++ was comparable and did not lag significantly.

In summary, as shown in Tab. 2, DMesh++ achieved the
best overall results across the entire dataset.

13.3. 3D Multi-View Reconstruction for Objaverse
In Figs. 1, 11 and 24 to 27, we present 3D multi-view recon-
struction results for models from the Objaverse [8] dataset.
These results demonstrate that our reconstruction algorithm
effectively recovers a variety of shapes without significant
difficulty.

As with the 2D complex drawings (Sec. 13.1), we report
the number of faces and the computation time for each re-
construction in Figs. 24 to 27. It can be observed that com-
putational cost generally increases with the number of faces
and is typically higher for scenes compared to individual
objects.

Finally, we note that the DNA example in Fig. 1 is a com-
mercial model from TurboSquid 7. Unlike the other models
from Objaverse, we initialized our mesh using 10K sample
points from the ground truth mesh, following [37]. This
was necessary because recovering the thin structures of the
DNA model proved challenging with the current coarse-to-
fine approach. We believe that developing alternative opti-
mization strategies to address such challenges would be an
interesting direction for future research.

7https://www.turbosquid.com/

10

https://www.turbosquid.com/


Figure 20. 2D Point Cloud Reconstruction result: Flower. # Edge: 99K, Time: 6 min.
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Figure 21. 2D Point Cloud Reconstruction result: Picasso Painting. # Edge: 159K, Time: 8 min.
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Figure 22. 2D Point Cloud Reconstruction result: Eagle. # Edge: 179K, Time: 11 min.
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Figure 23. 2D Point Cloud Reconstruction result: Chinese Drawing. # Edge: 987K, Time: 86 min.
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Figure 24. 3D Multi-View Reconstruction result: Sakura flower. # Face: 296K, Time: 14 min.

Figure 25. 3D Multi-View Reconstruction result: Skull. # Face: 416K, Time: 16 min.
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Figure 26. 3D Multi-View Reconstruction result: A fountain. # Face: 521K, Time: 36 min.

Figure 27. 3D Multi-View Reconstruction result: A scene with a stone staircase. # Face: 353K, Time: 36 min.
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